Skip to main content
Log in

Evaluation of metal mobility from copper mine tailings in northern Chile

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu2+, Mn, Fe, Zn, Mg2+, and K+ and Ca2+, SO4 2−, NO3 , and PO4 3− leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu2+ leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu2+/Fe and NO3 /SO4 2−; (2) tailings treated with CaCO3, Cu2+/K+; (3) tailings treated with compost, NO3 /SO4 −2 and EC/Cu2+; and (4) tailings treated with both amendments, EC/Fe and Cu2+/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acevedo O, Ortiz E, Cruz M, Cruz E (2004) El papel de óxidos de hierro en suelos. Terra Latinoamericana 22(4):485–497

    Google Scholar 

  • Acosta J, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, UK

    Book  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association, Bruselas

    Google Scholar 

  • Arizmendi N, Rivera P, De La Cruz F, Castro B, De La Garza F (2011) Lixiviación de hierro quelatado en suelos calcáreos. Terra Latinoamericana 29(3):231–237

    Google Scholar 

  • Basta NF, Tabatabai M (1985) Determination of exchangeable bases in soils by ion chromatography. Soil Sci Soc Am J 49:84–89

    Article  CAS  Google Scholar 

  • Benavides M, Gallego S, Tomaro M (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bingham FT (1982) Boron. In: Page AL (ed) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn. American Society of Agronomy, WI, pp 431–448

    Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1972) Methods for chemical analysis of soils. New Zealand, NZ DSIR. (NZ Soil Bureau Scientific Report 10 A, p. A9.1)

  • Bornemisza E (1982) Introducción a la química de suelos. OEA, Washington, DC

    Google Scholar 

  • Briggs PH (1996) Forty elements by inductively coupled plasma-atomic emission spectrometry. In: Arbogast BF (ed) Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey: U.S. Geological Survey Open-File Report 96–525, pp 77–94

  • Cappuyns V, Swennen R (2008) The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J Hazard Mater 158:185–195

    Article  CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  CAS  Google Scholar 

  • Chen Y, Zhu G, Tian G, Chen H (2003) Phosphorus and copper leaching from dredged sediment applied on a sandy loam soil: column study. Chemosphere 53:1179–1187

    Article  CAS  Google Scholar 

  • Choudhary OP, Josan AS, Bajwa MS, Kapur ML (2004) Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field Crop Res 87(2):103–116

    Article  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    Article  CAS  Google Scholar 

  • Coelho P, Silva S, Roma-Torres J, Costa C, Henriques A, Teixeira J, Gomes M, Mayan O (2007) Health impact of living near an abandoned mine- case study: Jales Mines. Int J Hyg Environ Health 210:399–402

    Article  CAS  Google Scholar 

  • Color, Munsell (2009) Geological rock-color chart. Geological Society of America, USA

    Google Scholar 

  • Dahlquist RL, Knoll JW (1978) Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major trace, and ultra-trace elements. Appl Spectrosc 32:1–30, ICP: ARL (Fisons) Model 3560 ICP-AES

    Article  CAS  Google Scholar 

  • Delvaux B (1995) Soils. In: Gowen D (ed) Bananas and plantains. Chapman and Hall, Glasgow, pp 230–257

    Chapter  Google Scholar 

  • Díaz A (2009) Diseño estadístico de experimentos, 2nd edn. Universidad de Antioquia, Colombia

    Google Scholar 

  • Dobermann A, Cassman K, Mamaril C, Sheehy J (1998) Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crop Res 56:113–138

    Article  Google Scholar 

  • Durza O, Gregor T, Antalová S (1993) The effect of the heavy metals soil contamination on magnetic susceptibility. Acta Univ Carol Geol 37:135–143

    Google Scholar 

  • Essington M (1990) Calcium molybdate solubility in spent oil shale and a preliminary evaluation of the association constants for the formation of CaMoO4(aq), KMoO4-(aq), and NaMoO4-(aq). Environ Sci Technol 24:214–220

    Article  CAS  Google Scholar 

  • Fassbender H, Roldan J (1973) Forma y equilibrios del manganeso en suelos de América Central. Turrialba 23:30–36

    CAS  Google Scholar 

  • Fassel VA, Kniseley RN (1974) Inductively coupled plasma optical emission spectroscopy. Anal Chem 46(13):1110A–1120A

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 3(I):207–214

    Article  Google Scholar 

  • García I, Díez M, Martín F, Simón M, Dorronsoro C (2009) Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil. Pedosphere 19:166–175

    Article  Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137

    Article  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide amended contaminated soils as evaluated by short- and long-term leaching tests. Environ Pollut 131:495–504

    Article  CAS  Google Scholar 

  • Hettiarachchi G, Pierzynski G, Ransom M (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619

    Article  CAS  Google Scholar 

  • Hirzel J (2010) Uso de enmiendas orgánicas en frutales de hoja caduca: consideraciones técnicas y dosificaciones. Revista Frutícola Copefrut SA, Obtención de la fruta de calidad 2:42–48

    Google Scholar 

  • Jalali M (2008) Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma 145:207–215

    Article  CAS  Google Scholar 

  • Johnston A, Goulding D, Mercer E (1993) Potassium leaching from a sandy soil. International Potash Institute, Horgen

    Google Scholar 

  • Kaschl A, Volker Römheld V, Chen Y (2002) The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci Total Environ 291:45–57

    Article  CAS  Google Scholar 

  • Kemmitt S, Wright D, Jones D (2005) Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biol Biochem 37:867–875

    Article  CAS  Google Scholar 

  • Kitula AGN (2006) The environmental and socio-economic impacts of mining on local livelihoods in Tanzania: a case study of Geita District. J Clean Prod 14:405–414

    Article  Google Scholar 

  • Krzaklewski W, Pietrzykowski M (2002) Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air Soil Pollut 141:125–142

    Article  CAS  Google Scholar 

  • Liao Y, Zheng S, Nie J, Xie J, Lu Y, Qin X (2013) Long-term effect of fertilizer and rice straw on mineral composition and potassium adsorption in a reddish paddy soil. J Integr Agric 12(4):694–710

    Article  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42(3):421–428

    Article  CAS  Google Scholar 

  • Liu X, Zhang W, Zhang M, Ficklin D, Wang F (2009) Spatio-temporal variations of soil nutrients by an altered land tenure system in China. Geoderma 152:23–34

    Article  CAS  Google Scholar 

  • Lizárraga L (2008) Afectación de una presa de Jales de Sulfuros Masivos a la Hidrogeoquímica de los escurrimientos Superficiales Aledaños. Universidad Nacional Autónoma de México. pp 64, 65, 174–178

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marsh T, Mcinerney M (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:1517–1521

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Murakami FS, Rodrigues PO, Campos CMTD, Silva MAS (2007) Physicochemical study of CaCO3 from egg shells. Food Sci Technol (Campinas) 27(3):658–662

    CAS  Google Scholar 

  • Nieto KF, Frankenberger WT (1985a) Single ion chromatography. I. Analysis of inorganic anions in soils. Soil Sci Soc Am J 49:587–592

    Article  CAS  Google Scholar 

  • Nieto KF, Frankenberger WT (1985b) Single ion chromatography. II. Analysis of ammonium, alkali metals, and alkaline earth cations in soils. Soil Sci Soc Am J 49:592–596

    Article  CAS  Google Scholar 

  • O’Connor G, Brobst R, Chaney R, Kincaid R, Mcdowell L, Pierzynski G, Rubin A, Van Riper G (2001) A modified risk assessment to establish molybdenum standards for land application of biosolids. J Environ Qual 30:1490–1507

    Article  Google Scholar 

  • Odlare M, Pell M, Svensson K (2008) Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag 28:1246–1253

    Article  CAS  Google Scholar 

  • Ortiz PR, Banda JIM, Encinia FB, Tovar CZ (2014) Rehabilitación de suelos salino-sódicos: estudio de caso en el distrito de riego 086, Jiménez, Tamaulipas, México. Terra Latinoamericana 32(3):211–220

    Google Scholar 

  • Plaster E (2000) La Ciencia del Suelo y su Manejo. Editorial Paraninfo

  • Ponizovsky A, Allen H, Ackerman A (2007) Copper activity in soil solutions of calcareous soils. Environ Pollut 145:1–6

    Article  CAS  Google Scholar 

  • Qadir M, Noble A, Schubert S, Thomas R, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  • Qadir M, Oster J, Schubert S, Noble A, Sahrawat K (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Reid R (2010) Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci 178:9–11

    Article  CAS  Google Scholar 

  • Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53:428–433

    Article  Google Scholar 

  • Roongtanakiat N, Osotsapar Y, Yindiram C (2008) Effects of soil amendment on growth and heavy metals content in vetiver grown on iron ore tailings. Kasetsart J Nat Sci 42:397–406

    CAS  Google Scholar 

  • Sanitá Di Toppi L, GabbriellI R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sawhney B, Bugbee G, Stilwell D (1994) Leachability of heavy metals from growth media containing source-separated municipal solid waste compost. J Environ Qual 23:718–722

    Article  CAS  Google Scholar 

  • Schippers A, Jozsa PG, Sand W, Kovacs ZM, Jelea M (2000) Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiol J 17:151–162

    Article  CAS  Google Scholar 

  • Schroeder K, Rufaut CG, Smith C, Mains D, Craw D (2005) Rapid plant-cover establishment on gold mine tailings in southern New Zealand: glasshouse screening trials. Int J Phytorem 7:307–322

    Article  CAS  Google Scholar 

  • Sequi P (1973) Molybdenum in earth. Agrochimica 17:119–140

    Google Scholar 

  • Shariatmadari H, Mermut AR (1999) Magnesium-and silicon-induced phosphate desorption in smectite–, palygorskite–, and sepiolite–calcite systems. Soil Sci Soc Am J 63(5):1167–1173

    Article  CAS  Google Scholar 

  • Smaling EMA (1998) Nutrient balances as indicators of productivity and sustainability in sub-Saharan African agriculture. Agric Ecosyst Environ 71(1–3):283

    Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils (EPA-600/2-78-054). U. S. Government Printing Office, Washington, DC

    Google Scholar 

  • Suárez D (2001) Sodic soil reclamation: modeling and field study. Aust J Soil Res 39:1225–1246

    Article  Google Scholar 

  • Urbano P (2001) Tratado de Fitotecnia General. Ediciones Mundi-Prensa

  • Vargas G, Rodríguez A (2000) Influencia de las aguas de riego en los procesos de salinización y sodificación de suelos en cultivos de plátanos y tomates (I. Canarias). Boletín de la Sociedad Española de la Ciencia del Suelo 7:129–136

    Google Scholar 

  • Wang H, Huang B, Shi X, Darilek J, Yu D, Sun W, Zhao Y, Chang Q, Öborn I (2008) Major nutrient balances in small-scale vegetable farming systems in peri-urban areas in China. Nutr Cycl Agroecosyst 81:203–218

    Article  Google Scholar 

  • Watson ME (1998) Boron: recommended chemical soil test procedures for the North Central Region. Research Publication No. 221. Missouri Agricultural Experiment Station SB 1001:45–48

  • Westerman RL (1990) Soil testing and plant analysis. Soil Science of America Book Series 3rd edn

  • Yang J, Mosby D, Casteel S, Blancher R (2001) Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ Sci Technol 35:3553–3559

    Article  CAS  Google Scholar 

  • Zalidis G, Barbayarinis N, Matsi T (1999) Forms and distribution of heavy metals in soils of the Axios Delta of Northern Greece. Soil Sci Plant Anal 30(5–6):817–827

    Article  CAS  Google Scholar 

  • Zhang F, Tiyip T, Ding J, Taff G, He Q (2009) The effects of the chemical components of soil salinity on electrical conductivity in the Region of the Delta Oasis of Weigan and Kuqa Rivers, China. Agric Sci China 8(8):985–993

    Article  CAS  Google Scholar 

  • Zhao S, Feng C, Wang D, Liu Y, Shen Z (2013) Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments properties and metal speciation. Chemosphere 91:977–984

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out in the framework of a CORFO-INNOVA project (08CM01-05), titled “Integrated development of magneto-chemical technologies and phytotechnologies applied to the remediation of heavy metals in mining environmental liability development”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Lam.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, E.J., Gálvez, M.E., Cánovas, M. et al. Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23, 11901–11915 (2016). https://doi.org/10.1007/s11356-016-6405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6405-y

Keywords

Navigation