Skip to main content
Log in

Airborne toluene removal for minimizing occupational health exposure by means of a trickle-bed biofilter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The paper presents the experimental results on a biotrickling pilot plant, with a water scrubber as pre-treatment, finalized to the treatment of an airborne toluene stream in a working place. The air stream was characterized by a very high variability of the inlet concentrations of toluene (range: 4.35–68.20 mg Nm−3) with an average concentrations of 16.41 mg Nm−3. The pilot plant has proved its effectiveness in toluene removal, along a 90-day experimentation period, in steady-state conditions. The scrubbing pre-treatment has achieved an average removal efficiency of 69.9 %, but in particular it has proven its suitability in the rough removal of the toluene peak concentrations, allowing a great stability to the following biological process. The biotrickling stage has achieved an additional average removal efficiency of 75.6 %, confirming the good biodegradability of toluene. The biofilm observation by a scanning confocal laser microscope has evidenced a biofilm thickness of 650 μm fully penetrated by toluene degrading bacteria. Among the micro-population Pseudomonas putida resulted the dominant specie. This bacterium can therefore be considered the responsible for most of the toluene degradation. The whole experimented process has determined an average 92.7 % for toluene removal efficiency. This result meets the most stringent limits and recommendations for occupational safety, given by authoritative organizations in the USA and EU; it also meets the odorous threshold concentration of 11.1 mg Nm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol 3(6):272–290. doi:10.1002/jat.2550030603

    Article  CAS  Google Scholar 

  • Bakeas EB, Siskos PA (2002) Volatile hydrocarbons in the atmosphere of Athens, Greece. Environ Sci Pollut R 9(4):234–240. doi:10.1007/BF02987497

    Article  CAS  Google Scholar 

  • Basu S, Yadav BK, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut R 22(24):20041–20049. doi:10.1007/s11356/015-5240-x

    Article  CAS  Google Scholar 

  • Cheremisinoff NP (2000) Handbook of hazardous chemical properties. Butterworth-Heinemann, Boston

    Google Scholar 

  • Christofoletti Mazzeo DE, Levy CE, de Franceschi de Angelis D, Marin-Morales MA (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408(20):4334–4340. doi:10.1016/j.scitotenv.2010.07.004

    Article  Google Scholar 

  • Commission Directive 2006/15/EC (2006) Establishing a second list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending Directives 91/322/EEC and 2000/39/EC, Brussel

    Google Scholar 

  • Copelli S, Torretta V, Raboni M, Viotti P, Luciano A, Mancini G, Nano G (2012) Improving biotreatment efficiency of hot waste air streams: experimental upgrade of a full plant. Chem Eng Trans 30:49–54. doi:10.3303/CET1230009

    Google Scholar 

  • Copelli S, Raboni M, Urbini G (2015) Water pollution: biological oxidation and natural control techniques. In: Reedijk J (ed) Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, pp 1-28. doi: 10.1016/B978-0-12-409547-2.11419-2

  • Estrada JM, Kraakman NJR, Lebrero R, Muñoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30(6):1354–1363. doi:10.1016/j.biotechadv.2012.02.010

    Article  CAS  Google Scholar 

  • Faber J, Brodzik K, Golda-Kopec A, Lomankiewicz D (2013) Benzene, toluene and xylenes levels in new and used vehicles of the same model. J Environ Sci-China 25(11):2324–2330. doi:10.1016/S1001-0742(12)60333-7

    Article  CAS  Google Scholar 

  • Gopinath M, Dhanasekar R (2012) Microbial degradation of toluene. Afr J Biotechnol 11(96):16210–16219. doi:10.5897/AJB12.2251

    CAS  Google Scholar 

  • Gopinath M, Mohanapriya C, Sivakumar K, Baskar G, Muthukumaran C, Dhanasekar R (2015) Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate. Environ Sci Pollut R 4:1–9. doi:10.1007/s11356-015-4550-3

    Google Scholar 

  • Innocenti I, Verginelli I, Massetti F, Piscitelli D, Gavasci R, Baciocchi R (2014) Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process. Sci Total Environ 485–486:726–738. doi:10.1016/j.scitotenv.2014.01.062

    Article  Google Scholar 

  • Kennes C, Veiga MC (2010) Technologies for the abatement of odours and volatile organic and inorganic compounds. Chem Eng Trans 23:1–6. doi:10.3303/CET1023001

    Google Scholar 

  • Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK (2014) Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut R 21(3):2240–2248. doi:10.1007/s11356-013-2150-7

    Article  CAS  Google Scholar 

  • Li JJ, Liao DQ, Xu MY, Sun GP (2013) Removal of BTEX by a biotrickling filter and analysis of corresponding bacterial communities. Huan Jing Ke Xue 34(7):2552–2559

    Google Scholar 

  • Lopes TJ, Bender DA (1998) Non point sources of volatile organic compounds in urban areas—relative importance of land surfaces and air. Environ Pollut 101(2):221–230. doi:10.1016/S0269-7491(98)00048-7

    Article  CAS  Google Scholar 

  • Mancini G, Viotti P, Luciano A, Raboni M, Fino D (2013) Full scale treatment of ASR wastes in a modified rotary kiln. Waste Manage 34(11):2347–2354. doi:10.1016/j.wasman.2014.06.028

    Article  Google Scholar 

  • Mathur AK, Majumder CB, Chatterjee S (2007) Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. J Hazard Mater 148(1-2):64–74. doi:10.1016/j.jhazmat.2007.02.030

    Article  CAS  Google Scholar 

  • Mohamed MF, Kang D, Aneja VP (2002) Volatile organic compounds in some urban locations in United States. Chemosphere 47(8):863–882. doi:10.1016/S0045-6535(02)00107-8

    Article  CAS  Google Scholar 

  • Mohammed Evuti A, Mohd Ariffin AH, Zainura Zainon N, Raja I (2014) Temperature and air–water ratio influence on the air stripping of benzene, toluene and xylene. Desalin Water Treat 54(10):2832–2839. doi:10.1080/19443994.2014.903209

    Google Scholar 

  • Muttamara S, Leong ST, Lertvisansak I (1999) Assessment of benzene and toluene emissions from automobile exhaust in Bangkok. Environ Res 81(1):23–31. doi:10.1006/enrs.1998.3941

    Article  CAS  Google Scholar 

  • National Center for Biotechnology Information-NCBI (2015). GenBank database. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 24 february 2015

  • Negrea P, Sidea F, Negrea A, Lupa L, Ciopec M, Muntean C (2008) Studies regarding the benzene, toluene and o-xylene removal from wastewater. Chem Bull “POLITEHNICA” Univ (Timisoara) 53(67):144–146

    Google Scholar 

  • Otenio MH, Lopes da Silva MT, Oliveira Marques ML, Roseiro JC, Bidoia ED (2005) Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz J Microbiol 36(3):258–261. doi:10.1590/S1517-83822005000300010

    Article  CAS  Google Scholar 

  • Raboni M, Urbini G (2014) Production and use of biogas in Europe: a survey of current status and perspectives. Rev Ambient Agua 9(2):191–202. doi:10.4136/ambi-agua.1324

    Google Scholar 

  • Raboni M, Torretta V, Viotti P, Urbini G (2013) Experimental plant for the physical-chemical treatment of groundwater polluted by municipal solid waste (MSW) leachate, with ammonia recovery. Rev Ambient Agua 8(3):22–32. doi:10.4136/ambi-agua.1250

    Google Scholar 

  • Raboni M, Torretta V, Urbini G, Viotti P (2015a) Automotive shredder residue: a survey of the hazardous organic micro-pollutants spectrum in landfill biogas. Waste Manage Res 33:48–54. doi:10.1177/0734242X14559300

    Article  CAS  Google Scholar 

  • Raboni M, Viotti P, Capodaglio AG (2015b) A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Rev Ambient Agua 10(1):9–21. doi:10.4136/ambi-agua.1492

    Google Scholar 

  • Rada EC, Raboni M, Torretta V, Copelli S, Ragazzi M, Caruson P, Istrate IA (2014) Removal of benzene from oil refinery wastewater treatment plant exhausted gases with a multi-stage biofiltration plant. Rev Chim-Bucharest 65(1):68–70

    CAS  Google Scholar 

  • Sala Cattaneo C, Tavelli S, Derudi M, Rota R, Raboni M, Torretta V, Copelli S (2014) study of a nimble model to evaluate the effects of a gasoline fire in a road tunnel. Chem Eng Trans 36:337–342. doi:10.3303/CET1436057

    Google Scholar 

  • Shareefdeen Z, Singh A (2004) Biotechnology for odor and air pollution control. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Tong L, Liao X, Chen J, Xiao H, Xu L, Zhang F, Niu Z, Yu J (2013) Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environ Sci Pollut R 20(4):2603–2615. doi:10.1007/s11356-012-1187-3

    Article  CAS  Google Scholar 

  • Torres EA, Cerqueira GS, Ferrer TM, Quintella CM, Raboni M, Torretta V, Urbini G (2013) Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil. Waste Manage 33(12):2670–2674. doi:10.1016/j.wasman.2013.07.030

    Article  CAS  Google Scholar 

  • Torretta V, Raboni M, Copelli S, Caruson P (2013) Application of multi-stage biofilter pilot plants to remove odor and VOCs from industrial activities air emissions. WIT Trans Ecol Envir 176:225–233. doi:10.2495/ESUS130191

    CAS  Google Scholar 

  • Torretta V, Raboni M, Copelli S, Caruson P (2015a) Effectiveness of a multi-stage biofilter approach at pilot scale to remove odor and VOCs. Int J Sustain Dev Plan 10(3):373–384. doi:10.2495/SDP-V10-N3-373-384

    Article  Google Scholar 

  • Torretta V, Collivignarelli MC, Raboni M, Viotti P (2015b) Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells. Environ Technol 36(18):2300–2307. doi:10.1080/09593330.2015.1026289

    Article  CAS  Google Scholar 

  • Urbini G, Viotti P, Gavasci R (2014) Attenuation of methane, PAHs and VOCs in the soil covers of an automotive shredded residues landfill: a case study. J Pharm Chem Res 6(11):618–625

    CAS  Google Scholar 

  • US-DHHS (Department of Health and Human Services) (2000) Toxicological profile for toluene. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • US-DoL (Department of Labor)–OSHA (Occupational Safety and Health Administration) (2015) Toluene occupation exposure limits. https://www.osha.gov/SLTC/toluene/exposure_limits.html. Accessed 2 october 2015

  • Xuefenga L, Zhou Q, Luo Y, Yang G, Zhou T (2013) Joint action and lethal level of toluene methylbenzene and xylene on midge (Chironomus plumosus) larvae. Environ Sci Pollut R 20(2):957-966. doi:10.1007/s11356-012-1264-7

  • Yuan B, Shao M, De Gouw J, Parrish DD, Lu S, Wang M, Zeng L, Zhang Q, Song Y, Zhang J, Hu M (2012) Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J Geophys Res-Atmos 117(D24302):1–17. doi:10.1029/2012JD018236

    Google Scholar 

Download references

Acknowledgments

The research was supported by the FAR program of the Rome University “La Sapienza”. The Authors also wish to acknowledge AirClean (Rho, Milan, Italy) for its technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Viotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raboni, M., Torretta, V. & Viotti, P. Airborne toluene removal for minimizing occupational health exposure by means of a trickle-bed biofilter. Environ Sci Pollut Res 23, 11751–11758 (2016). https://doi.org/10.1007/s11356-016-6352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6352-7

Keywords

Navigation