Skip to main content
Log in

Decontaminating soil organic pollutants with manufactured nanoparticles

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  • Cameselle C, Reddy KR, Darko-Kagya K, Khodadoust A (2011) Effect of dispersant on transport of nanoscale iron particles in soils: zeta potential measurements and column experiments. J Environ Eng 139:23–33

    Article  Google Scholar 

  • Chang Chien SW, Chang CH, Chen SH, Wang MC, Madhava Rao M, Satya Veni S (2011) Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2. Sci Total Environ 409:4101–4108

    Article  CAS  Google Scholar 

  • Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 44:576–582

    Article  CAS  Google Scholar 

  • Chang MC, Shu HY, Hsieh WP, Wang MC (2005) Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. J Air Waste Manage Assoc 55:1200–1207

    Article  CAS  Google Scholar 

  • Chang MC, Shu HY, Hsieh WP, Wang MC (2007) Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J Air Waste Manage 57:221–227

    Article  Google Scholar 

  • Christiansen CM, Damgaard I, Broholm M, Kessler T, Klint KE, Nilsson B, Bjerg PL (2010) Comparison of delivery methods for enhanced in situ remediation in clay till. Ground Water Monit Rem 30:107–122

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  Google Scholar 

  • Darko-Kagya K, Reddy KR (2011) Two-dimensional transport of lactate-modified nanoscale iron particles in porous media. Remediat J 21:45–72

    Article  Google Scholar 

  • Darko-Kagya K, Khodadoust AP, Reddy KR (2010a) Reactivity of aluminum lactate-modified nanoscale iron particles with pentachlorophenol in soils. Environ Eng Sci 27:861–869

    Article  CAS  Google Scholar 

  • Darko-Kagya K, Khodadoust AP, Reddy KR (2010b) Reactivity of lactate-modified nanoscale iron particles with 2,4-dinitrotoluene in soils. J Hazard Mater 182:177–183

    Article  CAS  Google Scholar 

  • Dien NT, De Windt W, Buekens A, Chang MB (2013) Application of bimetallic iron (BioCAT slurry) for pentachlorophenol removal from sandy soil. J Hazard Mater 252–253:83–90

    Article  Google Scholar 

  • Dong DB, Li PJ, Li XJ, Xu CB, Gong DW, Zhang YQ, Zhao Q, Li P (2010a) Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation. Chem Eng J 158:378–383

    Article  CAS  Google Scholar 

  • Dong DB, Li PJ, Li XJ, Zhao Q, Zhang YQ, Jia CY, Li P (2010b) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174:859–863

    Article  CAS  Google Scholar 

  • Fang GD, Si YB, Tian C, Zhang GY, Zhou DM (2012) Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res 19:784–793

    Article  CAS  Google Scholar 

  • Fang J, Shan XQ, Wen B, Huang RX (2013) Mobility of TX100 suspended multiwalled carbon nanotubes (MWCNTs) and the facilitated transport of phenanthrene in real soil columns. Geoderma 207:1–7

    Article  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027

    Article  CAS  Google Scholar 

  • Gomes HI, Fan G, Mateus EP, Dias-Ferreira C, Ribeiro AB (2014) Assessment of combined electro–nanoremediation of molinate contaminated soil. Sci Total Environ 493:178–184

    Article  CAS  Google Scholar 

  • Graebing P, Frank MP, Chib JS (2003) Soil photolysis of herbicides in a moisture-and temperature-controlled environment. J Agric Food Chem 51:4331–4337

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  • Hebert VR, Miller GC (1990) Depth dependence of direct and indirect photolysis on soil surfaces. J Agric Food Chem 38:913–918

    Article  CAS  Google Scholar 

  • Higarashi MM, Jardim WF (2002) Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catal Today 76:201–207

    Article  CAS  Google Scholar 

  • Hilarides RJ, Gray KA, Guzzetta J, Cortellucci N, Sommer C (1994) Radiolytic degradation of 2,3,7,8-TCDD in artificially contaminated soils. Environ Sci Technol 28:2249–2258

    Article  CAS  Google Scholar 

  • Hofmann T, Von der Kammer F (2009) Estimating the relevance of engineered carbonaceous nanoparticle facilitated transport of hydrophobic organic contaminants in porous media. Environ Pollut 157:1117–1126

    Article  CAS  Google Scholar 

  • Ibrahem AK, Abdel Moghny T, Mustafa YM, Maysour NE, Mohamed Saad El Din El Dars F, Farouk Hassan R (2012) Degradation of trichloroethylene contaminated soil by zero-valent iron nanoparticles. ISRN Soil Sci. doi:10.5402/2012/27083

  • Joo SH, Zhao DY (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    Article  CAS  Google Scholar 

  • Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2007) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900

    Article  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  • Katsenovich YP, Miralles-Wilhelm FR (2009) Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci Total Environ 407:4986–4993

    Article  CAS  Google Scholar 

  • Kim JY, Cohen C, Shuler ML, Lion LW (2000) Use of amphiphilic polymer particles for in situ extraction of sorbed phenanthrene from a contaminated aquifer material. Environ Sci Technol 34:4133–4139

    Article  CAS  Google Scholar 

  • Kim JY, Shim SB, Shim JK (2004) Comparison of amphiphilic polyurethane nanoparticles to nonionic surfactants for flushing phenanthrene from soil. J Hazard Mater 116:205–212

    Article  CAS  Google Scholar 

  • Kim HJ, Phenrat T, Tilton RD, Lowry GV (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830

    Article  CAS  Google Scholar 

  • Kim DG, Hwang YH, Shin HS, Ko SO (2012) Humic acid characteristics and effects on the reactivity of nano-scale zero-valent iron particles during nitrate reduction. Desalin Water Treat 49:147–156

    Article  CAS  Google Scholar 

  • Lerman I, Chen YN, Xing BS, Chefetz B (2013) Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A. Environ Pollut 182:169–176

    Article  CAS  Google Scholar 

  • Li SB, Turaga U, Shrestha B, Anderson TA, Ramkumar SS, Green MJ, Das S, Cañas-Carrell JE (2013) Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes. Ecotoxicol Environ Saf 96:168–174

    Article  CAS  Google Scholar 

  • Liao CJ, Chung TL, Chen WL, Kuo SL (2007) Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide. J Mol Catal A Chem 265:189–194

    Article  CAS  Google Scholar 

  • Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B 77:110–116

    Article  CAS  Google Scholar 

  • Liu RQ, Lal R (2012) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnol. doi:10.1155/2012/461468

    Google Scholar 

  • Liu YQ, Choi H, Dionysiou D, Lowry GV (2005a) Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem Mater 17:5315–5322

    Article  CAS  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005b) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Luo S, Yang SG, Wang XD, Sun C (2012) Reductive degradation of tetrabromobisphenol using iron–silver and iron–nickel bimetallic nanoparticles with microwave energy. Environ Eng Sci 29:453–460

    Article  CAS  Google Scholar 

  • Machado S, Stawiński W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ 461–462:323–329

    Article  Google Scholar 

  • Magureanu M, Mandache NB, Hu JC, Richards R, Florea M, Parvulescu VI (2007) Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Appl Catal B 76:275–281

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Arami M, Limaee NY, Gharanjig K, Nourmohammadian F (2007) Nanophotocatalysis using immobilized titanium dioxide nanoparticle: degradation and mineralization of water containing organic pollutant: case study of Butachlor. Mater Res Bull 42:797–806

    Article  CAS  Google Scholar 

  • Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260

    Article  CAS  Google Scholar 

  • Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Res 51:104–122

    Article  Google Scholar 

  • Oleszczuk P, Xing BS (2011) Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes. Chemosphere 85:1312–1317

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58

    Article  CAS  Google Scholar 

  • Park G, Shin HS, Ko SO (2005) A laboratory and pilot study of thermally enhanced soil vapor extraction method for the removal of semi-volatile organic contaminants. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 40:881–897

    Article  CAS  Google Scholar 

  • Pretzer LA, Song HJ, Fang YL, Zhao Z, Guo N, Wu TP, Arslan I, Miller JT, Wong MS (2013) Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. J Catal 298:206–217

    Article  CAS  Google Scholar 

  • Qi ZC, Hou L, Zhu DQ, Ji R, Chen W (2014) Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil. Environ Sci Technol 48:10136–10144

    Article  CAS  Google Scholar 

  • Quan X, Zhao X, Chen S, Zhao HM, Chen JW, Zhao YZ (2005) Enhancement of p, p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere 60:266–273

    Article  CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318

    Article  CAS  Google Scholar 

  • Reddy KR (2010) Nanotechnology for site remediation: dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. In: Borah S (ed) 6th International Congress on Environmental Geotechnics, New Delhi, India, November 8–12 2010. Environmental Geotechnics for Sustainable Development. R Chandra Sekhar, pp 165–182

  • Reddy KR, Darko-Kagya K, Cameselle C (2011a) Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Sep Purif Technol 79:230–237

    Article  CAS  Google Scholar 

  • Reddy KR, Khodadoust AP, Darko-Kagya K (2011b) Transport and reactivity of lactate-modified nanoscale iron particles in PCP-contaminated soils. J Hazard Toxic Radioact Waste 16:68–74

    Article  Google Scholar 

  • Reddy A, Madhavi V, Reddy KG, Madhavi G (2012) Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts. J Chem. doi:10.1155/2013/521045

    Google Scholar 

  • Reddy KR, Darnault CJ, Darko-Kagya K (2013) Transport of lactate-modified nanoscale iron particles in porous media. J Geotech Geoenviron 140:1–19

    Google Scholar 

  • Reddy KR, Khodadoust AP, Darko-Kagya K (2014) Transport and reactivity of lactate-modified nanoscale iron particles for remediation of DNT in subsurface soils. J Environ Eng 140:1–12. doi:10.1061/(ASCE)EE.1943-7870.0000870

    Article  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2014) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22:4122–4143

    Article  Google Scholar 

  • San Román I, Alonso ML, Bartolomé L, Galdames A, Goiti E, Ocejo M, Moragues M, Alonso RM, Vilas JL (2013) Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere 93:1324–1332

    Article  Google Scholar 

  • Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Chun CL, Penn RL, Reardon EJ (2008) Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. J Phys Chem C 112:2286–2293

    Article  CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut 192:349–359

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65

    Article  CAS  Google Scholar 

  • Singh R, Singh A, Misra V, Singh RP (2011) Degradation of lindane contaminated soil using zero-valent iron nanoparticles. J Biomed Nanotechnol 7:175–176

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Mudiam MKR, Chauhan LKS, Singh RP (2012) Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. J Hazard Mater 237–238:355–364

    Article  Google Scholar 

  • Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1–18

    Article  CAS  Google Scholar 

  • Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 40:5514–5519

    Article  CAS  Google Scholar 

  • Star A, Han TR, Gabriel JCP, Bradley K, Grüner G (2003) Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett 3:1421–1423

    Article  CAS  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  CAS  Google Scholar 

  • Towell MG, Browne LA, Paton GI, Semple KT (2011) Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil. Environ Pollut 159:706–715

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610

    Article  CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358

    Article  CAS  Google Scholar 

  • Van der Wal L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM (2004) Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol 38:4842–4848

    Article  Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    Article  CAS  Google Scholar 

  • Wang JS, Chiu KH (2009) Destruction of pentachlorobiphenyl in soil by supercritical CO2 extraction coupled with polymer-stabilized palladium nanoparticles. Chemosphere 75:629–633

    Article  CAS  Google Scholar 

  • Wang LL, Huang Y, Kan AT, Tomson MB, Chen W (2012) Enhanced transport of 2,2′,5,5′-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (n C60). Environ Sci Technol 46:5422–5429

    Article  CAS  Google Scholar 

  • Yang GCC, Yeh CF (2011) Enhanced nano-Fe3O4/S2O8 2− oxidation of trichloroethylene in a clayey soil by electrokinetics. Sep Purif Technol 79:264–271

    Article  CAS  Google Scholar 

  • Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Yuan SH, Long HY, Xie WJ, Liao P, Tong M (2012) Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma 185:18–25

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanoparticle Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang LL, Wang LL, Zhang P, Kan AT, Chen W, Tomson MB (2011a) Facilitated transport of 2,2′,5,5′-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Environ Sci Technol 45:1341–1348

    Article  CAS  Google Scholar 

  • Zhang M, He F, Zhao DY, Hao XD (2011b) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45:2401–2414

    Article  CAS  Google Scholar 

  • Zhang SJ, Shao T, Karanfil T (2011c) The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. Water Res 45:1378–1386

    Article  CAS  Google Scholar 

  • Zhao DY, Pignatello JJ, White JC, Braida W, Ferrandino F (2001) Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. Water Resour Res 37:2205–2212

    Article  CAS  Google Scholar 

  • Zhao X, Quan X, Zhao HM, Chen S, Zhao YZ, Chen JW (2004) Different effects of humic substances on photodegradation of p,p’-DDT on soil surfaces in the presence of TiO2 under UV and visible light. J Photochem Photobiol A 167:177–183

    Article  CAS  Google Scholar 

  • Zhuang J, Gentry RW (2011) Environmental application and risks of nanotechnology: a balanced view. In: Ripp S, Henry TB (eds) Biotechnology and nanotechnology risk assessment: minding and managing the potential threats around us. ACS Symposium Series, vol 1079. American Chemical Society, Washington, DC, pp 41–67

Download references

Acknowledgments

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB14020204) and National Key Technology R&D Program of China (Grant No. 2015BAD0503; 2012BAD14B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chen, X., Zhuang, J. et al. Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23, 11533–11548 (2016). https://doi.org/10.1007/s11356-016-6255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6255-7

Keywords

Navigation