Skip to main content

Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions

Abstract

This study investigates the effect of a mixed surfactant system on the desorption of polycyclic aromatic hydrocarbons (PAHs) from soil model systems. The interaction of a non-ionic surfactant, Tween 80, and an anionic one, sodium laurate, forming mixed micelles, produces several beneficial effects, including reduction of adsorption onto solid of the non-ionic surfactant, decrease in the precipitation of the fatty acid salt, and synergism to solubilize PAHs from solids compared with individual surfactants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ahn CK, Woo SH, Park JM (2008) Enhanced sorption of phenanthrene on activated carbon in surfactant solution. Carbon 46:1401–1410

    CAS  Article  Google Scholar 

  • Alargova RG, Kochijashky II, Sierra ML, Kwetkat K, Zana R (2001) Mixed micellization of dimeric (Gemini) surfactants and conventional surfactants. II. CMC and micelle aggregation numbers for various mixtures. J Colloid Interface Sci 235:119–129

    CAS  Article  Google Scholar 

  • Bakshi MS, Kaur G, Ahmad I (2005) Synergistic interactions in mixed micelles of alkyltriphenylphosphonium bromides and triblock polymers. Colloid Surf A Physicochem Eng Asp 253:1–8

    CAS  Article  Google Scholar 

  • Barvinchenko VN, Lipkovskaya NA, Fedyanina TV (2013) Adsorption of a cationic surfactant, miramistin, from aqueous solutions on the surface of highly dispersed silica. Colloid J 75:623–627

    CAS  Article  Google Scholar 

  • Bernardez LA, Ghoshal S (2004) Selective solubilization of polycyclic aromatic hydrocarbons from multicomponent nonaqueous-phase liquids into nonionic surfactant micelles. Environ Sci Technol 38:5878–5887

    CAS  Article  Google Scholar 

  • Borgnino L, Garcia MG, del Hidalgo MV, Avena M, De Pauli CP, Blesa MA, Depetris PJ (2010) Modeling the acid-base surface properties of aquatic sediments. Aquat Geochem 16:279–291

    CAS  Article  Google Scholar 

  • Clint JH (1992) Surfactant Aggregation. Blackie & Son Ltd, Glasgow, p 134

    Book  Google Scholar 

  • Chong Z-Y, Liao X-Y, Yan X-L, Sun L, Zhao D, Liang T (2014) Enhanced desorption of PAHs from manufactured gas plant soils using different types of surfactants. Pedosphere 24:209–219

    CAS  Article  Google Scholar 

  • Crampon M, Bureau F, Akpa-Vinceslas M, Bodilis J, Machour N, Le Derf F, Portet-Koltalo F (2014) Correlations between PAH bioavailability, degrading bacteria and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environ Sci Pollut Res 21:8133–8145

    CAS  Article  Google Scholar 

  • Edwards DA, Zafar A, Luthy RG (1994) Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ Sci Technol 28:1550–1560

    CAS  Article  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    CAS  Article  Google Scholar 

  • Guo H, Liu Z, Yang S, Sun C (2009) The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. J Hazard Mater 170:1236–1241

    CAS  Article  Google Scholar 

  • Jafvert C, Heath J (1991) Sediment- and saturated-soil-associated reactions involving an anionic surfactant (dodecylsulfate). 1. Precipitation and micelle formation. Environ Sci Technol 25:1031–1038

    CAS  Article  Google Scholar 

  • Lau EV, Gan S, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649

    CAS  Article  Google Scholar 

  • Lakraa J, Tikariha D, Yadav T, Das S, Ghosh S, Satnami ML, Ghosh KK (2014) Mixed micellization of Gemini and cationic surfactants: physicochemical properties and solubilization of polycyclic aromatic hydrocarbons. Colloids Surf A Physicochem Eng Asp 451:56–65

    Article  Google Scholar 

  • Liu Z-Y, Li Z-Q, Song X-W, Zhang J-C, Zhang L, Zhao S (2014) Dynamic interfacial tensions of binary nonionic–anionic and nonionic surfactant mixtures at water–alkane interfaces. Fuel 135:91–98

    CAS  Article  Google Scholar 

  • Lopata JJ, Werts KM, Scamehorn JF, Harwell JH, Grady BP (2010) Thermodynamics of mixed anionic/nonionic surfactant adsorption on alumina. J Colloid Interface Sci 342:415–426

    CAS  Article  Google Scholar 

  • Mc. Entee JC, Ogneva-Himmelberger Y (2008) Diesel particulate matter, lung cancer, and asthma incidences along major traffic corridors in MA, USA: a GIS analysis. Health & Place 14:817–828

    Article  Google Scholar 

  • Nizri G, Magdassi S (2005) Solubilization of hydrophobic molecules in nanoparticles formed by polymer-surfactant interactions. J Colloid Interface Sci 291:169–174

    CAS  Article  Google Scholar 

  • Panda M, Din K (2013) Solubilization of polycyclic aromatic hydrocarbons by Gemini–conventional mixed surfactant systems. J Mol Liq 187:106–113

    CAS  Article  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138:24–58

    CAS  Article  Google Scholar 

  • Peters S, Talaska G, Jönsson BAG, Kromhout H, Vermeulen R (2008) Polycyclic aromatic hydrocarbon exposure, urinary mutagenicity and DNA adducts in rubber manufacturing workers. Cancer Epidemiol Biomed Prev 17:1452–1459

    CAS  Article  Google Scholar 

  • Rodriguez-Escales P, Sayara T, Vicent T, Folch A (2012) Influence of soil granulometry on pyrene desorption in groundwater using surfactants. Water Air Soil Pollut 223:125–133

    CAS  Article  Google Scholar 

  • Sales PS, de Rossi RH, Fernández MA (2011) Different behaviours in the solubilization of polycyclic aromatic hydrocarbons in water induced by mixed surfactant solutions. Chemosphere 84:1700–1707

    CAS  Article  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    CAS  Article  Google Scholar 

  • Torres MF, Sales PS, de Rossi RH, Fernández MA (2010) Aggregation behaviour of Brij-35/ perfluorononanoic acid mixtures. Langmuir 26:17858–17866

    CAS  Article  Google Scholar 

  • Wang X, Cheng H, Xu X, Zhuang G, Zhao C (2008) A wintertime study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in Beijing: assessment of energy structure conversion. J Hazard Mater 157:47–56

    CAS  Article  Google Scholar 

  • Wei J, Huang G, Yu H, An C (2011) Efficiency of single and mixed Gemini/conventional micelles on solubilisation of phenanthrene. Chem Eng J 168:201–207

    CAS  Article  Google Scholar 

  • Wei Y, Liang X, Tong L, Guo C, Dang Z (2015) Enhanced solubilization and desorption of pyrene from soils by saline anionic-nonionic surfactant systems. Colloid Surf A Physicochem Eng Asp 468:211–218

    CAS  Article  Google Scholar 

  • Wilcke W (1996) Polyciclic aromatic hydrocarbons (PAHs) in soil—a review. J Plant Nutr Soil Sci 163:229–248

    Article  Google Scholar 

  • Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166

    CAS  Article  Google Scholar 

  • Yoshimura T, Ohno A, Esumi K (2004) Mixed micellar properties of cationic trimeric-type quaternary ammonium salts and anionic sodium n-octyl sulfate surfactants. J Colloid Interface Sci 272:191–196

  • Zhang L, Luo L, Zhao S, Yu J (2002) Studies of synergism/antagonism for lowering dynamic interfacial tensions in surfactant/alkali/acidic oil systems, part 2: synergism/antagonism in binary surfactant mixtures. J Colloid Interface Sci 251:166–171

    CAS  Article  Google Scholar 

  • Zhang D, Zhu L (2012) Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut 164:169–174

    CAS  Article  Google Scholar 

  • Zheng G, Selvam A, Wong JWC (2012) Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant. Environ Pollut 46:12062–12068

    CAS  Google Scholar 

  • Zhou Q, Rosen MJ (2003) Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19:4555–4562

    CAS  Article  Google Scholar 

  • Zhou W, Zhu L (2007) Enhanced desorption of phenanthrene from contaminated soil using anionic/non-ionic mixed surfactant. Environ Pollut 147:350–357

    CAS  Article  Google Scholar 

  • Zhu L, Chen B, Tao S (2004) Sorption behavior of polycyclic aromatic hydrocarbons in soil-water system containing nonionic surfactant. Environ Eng Sci 21:263–272

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Técnica (ANPCyT), Ministerio de Ciencia y Tecnología de la Provincia de Córdoba (MINCyT) and Universidad Nacional de Córdoba (UNC). P. S. thanks ANPCyT for a research fellowship. We also thank Dr. Laura Borgnino for the gift of the sample of sediment used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana A. Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sales, P.S., Fernández, M.A. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions. Environ Sci Pollut Res 23, 10158–10164 (2016). https://doi.org/10.1007/s11356-016-6242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6242-z

Keywords

  • Solubilization
  • Mixed surfactants
  • Polycyclic aromatic hydrocarbon
  • Adsorption
  • Extraction
  • Synergism