Skip to main content
Log in

Determination of the distribution and speciation of selenium in an argillaceous sample using chemical extractions and post-extractions analyses: application to the hydrogeological experimental site of Poitiers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To better understand selenium’s dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive’s drinking water limit value (10 μg L−1) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography–mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as ‘easily mobilizable’ when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter’s fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of SeVI (20–30 %) and SeIV (70–80 %) in the ‘easily mobilizable’ fraction, while only SeIV was detected in alkaline-soluble organic matter fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams MM, Burau RG (1989) Fractionation of selenium and detection of selenomethionine in a soil extract. Commun Soil Sci Plant Anal 20:221–37

    Article  CAS  Google Scholar 

  • Alfthan G, Wang DC, Aro A, Soveri J (1995) The geochemistry of selenium in groundwaters in Finland. Sci Total Environ 162:93–103

    Article  CAS  Google Scholar 

  • Avoscan L (2007) Study of resistance of Cupriavidus metallidurans CH34 to selenite and selenate oxyanions: localization, accumulation and transformation of selenium. PhD Thesis, Université Joseph Fourrier, Grenoble (in French)

    Google Scholar 

  • Brindley GW, Brown G (1980) Crystal Structures of Clay Minerals and their X-Ray Identification. Ed. Mineralogical Society of Great Britain and Ireland. https://books.google.com.lb/books/about/Crystal_Structures_of_Clay_Minerals_and.html?id=KhAJAQAAIAAJ&redir_esc=y

  • Bruggeman C, Maes A, Vancluysen J (2007) The interaction of dissolved Boom Clay and Gorleben humic substances with selenium oxyanions (selenite and selenate). Appl Geochem 22:1371–9

    Article  CAS  Google Scholar 

  • Chatelier M (2010) Feasibility of an in situ denitrification pilot in a karstified aquifer. PhD Thesis. University of Poitiers (in French). http://theses.univ-poitiers.fr/notice/view/5542?id=5933

  • Coppin F, Chabroullet C, Martin-Garin A, Balesdent J, Gaude JP (2006) Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium. Biol Fertil Soils 42:379–86

    Article  CAS  Google Scholar 

  • Cutter GA (1985) Determination of selenium speciation in biogenic particles and sediments. Anal Chem 57(14):2951–5

    Article  CAS  Google Scholar 

  • Darcheville O, Fevrier L, Haichar FZ, Berge O, Martin-Garin A, Renault P (2008) Aqueous, solid and gaseous partitioning of selenium in an oxic sandy soil under different microbiological states. J Environ Radioact 99:981–92

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548–56

    Article  CAS  Google Scholar 

  • Dhillon SK, Dhillon S (1999) Adsorption–desorption reactions of selenium in some soils of India. Geoderma 93:19–31

    Article  CAS  Google Scholar 

  • Dhillon SK, Hundal BK, Dhillon KS (2007) Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere 66:1734–43

    Article  CAS  Google Scholar 

  • Duc M, Lefèvre G, Fédoroff M (2006) Sorption of selenite ions on hematite. J Colloid Interface Sci 298:556–63

    Article  CAS  Google Scholar 

  • Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioact 70:61–72

    Article  CAS  Google Scholar 

  • Fan H, Wen H, Hu R, Zhao H (2011) Selenium speciation in Lower Cambrian Se-enriched strata in South China and its geological implications. Geochim Cosmochim Acta 75:7725–40

    Article  CAS  Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  Google Scholar 

  • Gao S, Tanji KK, Dahlgren RA, Ryu H, Herbel MJ, Higashi RM (2007) Chemical status of selenium in evaporation basins for disposal of agricultural drainage. Chemosphere 69:585–94

    Article  CAS  Google Scholar 

  • Gomez-Ariza JL, Giraldez I, Sanchez-Rodas D, Morales E (1999) Metal readsorption and redistribution during the analytical fractionation of trace elements in oxic estuarine sediments. Anal Chim Acta 399:295–307

    Article  CAS  Google Scholar 

  • Gourcy L, Lions J, Wyns R, Dictor MC, Brenot A, Crouzet C, Ghestem JP (2011) Selenium origin and understanding the processes in the waters of the Seine-Normandy Basin. Final Report., BRGM (in French). http://infoterre.brgm.fr/rapports/RP-59445-FR.pdf

  • Grasset L, Amblès A (1998) Structural study of soil humic acids and humin using a new preparative thermochemolysis technique. J Anal Appl Pyrolysis 47:1–12

    Article  CAS  Google Scholar 

  • Gustafsson JP, Johnsson L (1994) The association between selenium and humic substances in forested ecosystems—laboratory evidence. Appl Organomet Chem 8:141–7

    Article  CAS  Google Scholar 

  • Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 125(2):717–26

    Article  CAS  Google Scholar 

  • Jordan N, Marmier N, Lomenech C, Giffaut E, Ehrhardt JJ (2009) Competition between selenium (IV) and silicic acid on the hematite surface. Chemosphere 75:129–34

    Article  CAS  Google Scholar 

  • Kadιoğlu YY, Karaca S, Bayrakçeken S (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel Process Technol 41(3):273–87

    Article  Google Scholar 

  • Kulp TR, Pratt LM (2004) Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim Cosmochim Acta 68:3687–701

    Article  CAS  Google Scholar 

  • Levander OA, Burk RF (2007) Update of human dietary standards for selenium. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health, 2nd edn. Springer, New York, pp 399–410

    Google Scholar 

  • Lipton DS (1991) Associations of selenium with inorganic and organic constituents in soils of a semi-arid region. PhD Thesis, University of California, Berkeley

    Google Scholar 

  • Lussier C, Veiga V, Baldwin S (2003) The geochemistry of selenium associated with coal waste in the Elk River Valley, Canada. Environ Geol 44:905–13

    Article  CAS  Google Scholar 

  • Martens DA, Suarez D (1997a) Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environ Sci Technol 31:133–9

    Article  CAS  Google Scholar 

  • Martens DA, Suarez DL (1997b) Selenium speciation of marine shales, alluvial soils, and evaporation basin soils of California. J Environ Qual 26:424–32

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–6

    Article  CAS  Google Scholar 

  • Matamoros-Veloza A, Newton RJ, Benning LG (2011) What controls selenium release during shale weathering? Appl Geochem 26:S222–6

    Article  CAS  Google Scholar 

  • Missana T, Alonso U, Garcia-Gutierrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–8

    Article  CAS  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2 ed. Oxford university Press, Inc.

  • Moreno N, Querol X, Andrés JM, Stanton K, Towler M, Nugteren H, Janssen-Jurkovicová M, Jones R (2005) Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84:1351–63

    Article  CAS  Google Scholar 

  • Neal RH (1995) Selenium. ln: BJ Alloway. ed. Heavy Metals in Soils. 2nd ed. Blackie academic and professional, London, p. 260

  • Puttmann W, Villar H (1987) Occurrence and geochemical significance of 1,2,5,6-tetramethylnaphthalene. Geochim Cosmochim Acta 51:3023–9

    Article  Google Scholar 

  • Raleston NVC, Unrine J, Wallschlager D (2008) Biogeochemistry and analysis of selenium and its species. Report for the North American Metals Council. http://www.namc.org/docs/00043673.PDF

  • Seby F, Potin-Gautier M, Giffaut E, Donard OFX (1998) Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere. Analusis 26:193–8

    Article  CAS  Google Scholar 

  • Strachan MG, Alexander R, Kagi RI (1988) Trimethylnaphthalenes in crude oils and sediments: effects of source and maturity. Geochim Cosmochim Acta 52:1255–64

    Article  CAS  Google Scholar 

  • Swanson VE, Swanson VE (1961) Geology and geochemistry of uranium in marine black shales: a review. US Government Printing Office, Washington DC

    Google Scholar 

  • Tokunaga T, Lipton D, Benson S, Yee A, Oldfather J, Duckart E, Johannis P, Halvorsen K (1991) Soil selenium fractionation, depth profiles and time trends in a vegetated site at Kesterson Reservoir. Water Air Soil Pollut 57–58:31–41

    Article  Google Scholar 

  • Tolu J, Le Hécho I, Bueno M, Thiry Y, Potin-Gautier M (2011) Selenium speciation analysis at trace level in soils. Anal Chim Acta 684:126–33

    Article  CAS  Google Scholar 

  • van Aarssen BGK, Hessels JKC, Abbink OA, de Leeuw JW (1992) The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochim Cosmochim Acta 56:1231–46

    Article  Google Scholar 

  • van Aarssen BGK, Bastow TP, Alexander R, Kagi RI (1999) Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. Org Geochem 30:1213–27

    Article  Google Scholar 

  • Van Dorst SH, Peterson PJ (1984) Selenium speciation in the soil solution and its relevance to plant uptake. J Sci Food Agric 35:601–5

    Article  Google Scholar 

  • Velinsky DJ, Cutter GA (1990) Determination of elemental selenium and pyrite-selenium in sediments. Anal Chim Acta 235:419–25

    Article  CAS  Google Scholar 

  • Wang T, Wang J, Tang Y, Shi H, Ladwig K (2009) Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium†. Energy Fuel 23:2959–66

    Article  CAS  Google Scholar 

  • White AF, Benson SM, Yee AW, Wollenberg HA, Flexser S (1991) Groundwater contamination at the Kesterson Reservoir, California: 2. Geochemical parameters influencing selenium mobility. Water Resour Res 27:1085–98

    Article  CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–9

    Article  CAS  Google Scholar 

  • Wright MT, Parker DR, Amrhein C (2003) Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environ Sci Technol 37:4709–16

    Article  CAS  Google Scholar 

  • Wright WG (1999) Oxidation and mobilization of selenium by nitrate in irrigation drainage. J Environ Qual 28:1182–7

    Article  CAS  Google Scholar 

  • Zawislanski PT, Benson S, TerBerg R, Borglin SE (2003) Selenium speciation, solubility, and mobility in land-disposed dredged sediments. Environ Sci Technol 37:2415–20

    Article  CAS  Google Scholar 

  • Zhang Y, Moore JN (1996) Selenium fractionation and speciation in a wetland system. Environ Sci Technol 30:2613–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this study by the Poitou-Charentes Water Research Program (CPER #1) and by the French National Observatory System (NOS) H+ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bassil.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassil, J., Naveau, A., Bueno, M. et al. Determination of the distribution and speciation of selenium in an argillaceous sample using chemical extractions and post-extractions analyses: application to the hydrogeological experimental site of Poitiers. Environ Sci Pollut Res 23, 9598–9613 (2016). https://doi.org/10.1007/s11356-016-6113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6113-7

Keywords

Navigation