Skip to main content

Advertisement

Log in

Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The distribution, enrichment, and ecotoxicity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. A total of eleven surficial sediment samples were collected along a vertical transect along the freshwater–saline water gradient. The sediment samples were digested using EPA 3051 method and were analyzed on ICP-MS. Geo-accumulation index suggests moderately polluted sediment quality with respect to Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As, and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co, and Cd, moderate by Fe, Mn, Cu, and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb, and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co, and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achyuthan H, Richard Mohan D, Srinivasalu S, Selvaraj K (2002) Trace metals concentrations in the sediment cores of estuary and tidal zones between Chennai and Pondicherry, along the east coast of India. Indian J Mar Sci 31:141–149

    CAS  Google Scholar 

  • Ahmed K, Mehedi Y, Haque R, Mondol P (2011) Heavy metal concentrations in some macrobenthic fauna of the Sundarban mangrove forest, south west coast of Bangladesh. Environ Monit Assess 177:505–514

    Article  CAS  Google Scholar 

  • Antoniadis V, Alloway BJ (2002) The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut 117:515–521

    Article  CAS  Google Scholar 

  • Anu G, Nair SM, Kumar NC, Jayalakshmi KV, Pamala D (2009) A baseline study of trace metals in a coral reef sedimentary environment, Lakshadweep Archipelago. Environ Earth Sci 59:1245–1266

    Google Scholar 

  • Badarudeen A, Damodaran KT, Sajan K, Padmalal D (1996) Texture and geochemistry of the sediments of a tropical mangrove ecosystem, southwest coast of India. Environ Geol 27:164–169

    Article  CAS  Google Scholar 

  • Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2012) Sedimentation and trace metal distribution in selected locations of Sundarban mangroves and Hooghly estuary, northeast coast of India. Environ Geochem Health 34:27–42

    Article  CAS  Google Scholar 

  • Bayen S, Buffle J (2009) Hollow-fibre liquid-phase microextraction of polychlorinated biphenyls: dynamic aspects and analytical challenges associated with their speciation. Int J Environ Anal Chem 89:277–292

    Article  CAS  Google Scholar 

  • Bayen S, Worms I, Parthasarathy N, Wilkinson KJ, Buffle J (2006) Cadmium bioavailability and speciation using the permeation liquid membrane. Anal Chim Acta 575:267–273

    Article  CAS  Google Scholar 

  • Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice Lagoon: the role of the industrial area. Sci Total Environ 295:35–49

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sc Lett 42:399–411

    Article  CAS  Google Scholar 

  • Cabrera F, Clemente L, Dìaz Barrientos E, López R, Murillo JM (1999) Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci Total Environ 242:117–129

    Article  CAS  Google Scholar 

  • Chakraborty P, Ramteke D, Chakraborty S, Nagender Nath B (2014) Changes in metal contamination levels in estuarine sediments around India—an assessment. Mar Pollut Bull 78:15–25

    Article  CAS  Google Scholar 

  • Chatterjee MV, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MV, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chaudhuri P, Nath B, Birch G (2014) Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Mar Pollut Bull 79:284–292

    Article  CAS  Google Scholar 

  • Cobelo-García A, Prego R (2003) Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contamination. Mar Pollut Bull 46:1253–1262

    Article  Google Scholar 

  • Coleman JM (1969) Brahmaputra River: channel processes and sedimentation. Sediment Geol 3:129–239

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal states. Environ Sci Technol 29:470–477

    Article  CAS  Google Scholar 

  • Dickinson WW, Dunbar GB, McLeod H (1996) Heavy metal history from cores in Wellington Harbour, New Zealand. Environ Geol 27:59–69

    Article  CAS  Google Scholar 

  • Donato DC, Kauffman JB, Kurnianto S, Stidham M, Murdiyarso D (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR, Peters SL, Aggarwal PK (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour Res 38:12–18

    Google Scholar 

  • El Nemr A, Khaled A, El Sikaily A (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environ Monit Assess 118:89–112

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84

    Article  Google Scholar 

  • Giri C, Pengra B, Zhiliang Z, Singh A, Tieszen LL (2007) Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multitemporal satellite data from 1973 to 2000. Estuar Coast Shelf Sci 73:91–100

    Article  Google Scholar 

  • Goodbred SL Jr, Kuehl SA, Steckler MS, Sarker MH (2003) Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence. Sediment Geol 155:301–316

    Article  Google Scholar 

  • Gu YG, Wang ZH, Lu SH, Jiang SJ, Mu DH, Shu YH (2012) Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ Pollut 163:248–255

    Article  CAS  Google Scholar 

  • Guzmán HM, Jiménez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar Pollut Bull 24:554–561

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Harbison P (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17:246–250

    Article  CAS  Google Scholar 

  • Harris RR, Santos MC (2000) Heavy metal contamination and physiological variability in the Brazilian mangrove crabs Ucides cordatus and Callinectes danae (Crustacea: Decapoda). Mar Biol 137:691–703

    Article  CAS  Google Scholar 

  • Hornung H, Karm MD, Cohen Y (1989) Trace metal distribution on sediments and benthic fauna of Haifa Bay, Israel. Estuar Coast Shelf Sci 29:43–56

    Article  CAS  Google Scholar 

  • Huang P, Li T, Li A, Yu X, Hu N (2014) Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Cont Shelf Res 73:1–13

    Article  Google Scholar 

  • Hussain Z, Acharya G (1994) Mangroves of the Sundarbans, volume two: Bangladesh. IUCN—The World Conservation Union, Bangkok, Thailand, p 257

    Google Scholar 

  • Izquierdo C, Usero J, Gracia I (1997) Speciation of heavy metals in sediments from salt marshes on the southern Atlantic coast of Spain. Mar Pollut Bull 34:123–128

    Article  CAS  Google Scholar 

  • Janaki-Raman D, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Mohan SP, Ram-Mohan V (2007) Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environl Pollut 145:245–257

    Article  CAS  Google Scholar 

  • Jonathan MP, Sarkar SK, Roy PD, Alam Md A, Chatterjee M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2010) Acid leachable trace metals in sediment cores from Sunderban mangrove wetland, India: an approach towards regular monitoring. Ecotoxicology 19:405–418

    Article  CAS  Google Scholar 

  • Karim A (1995) Mangrove silviculture, Vol. 1. Draft report of FAO/ UNDP project BGD/84/056-integrated resource development of the Sundarbans reserve forest, Khulna

  • Keene AF, Johnston SG, Bush RT, Burton ED, Sullivan LA (2010) Reactive trace element enrichment in a highly modified, tidally inundated acid sulfate soil wetland: East Trinity, Australia. Mar Pollut Bull 60:620–626

    Article  CAS  Google Scholar 

  • Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44:523–535

    Article  CAS  Google Scholar 

  • Krop HB, Van Noort PCM, Govers HAJ (2001) Determination and theoretical aspects of the equilibrium between dissolved organic matter and hydrophobic organic micropollutants in water (Kdoc). Rev Environ Contam Toxicol 169:1–122

    CAS  Google Scholar 

  • Kumar A, Ramanathan AL (2015) Speciation of selected trace metals (Fe, Mn, Cu and Zn) with depth in the sediments of Sundarban mangroves: India and Bangladesh. J Soils Sediments 15:2476–2486

    Article  CAS  Google Scholar 

  • Kumar A, Ramanathan AL, Prabha S, Ranjan RK, Ranjan S, Singh G (2012) Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar. Environ Monit Assess 184:3027–3042

    Article  CAS  Google Scholar 

  • Lacerda LD, Martinelli LA, Rezende CE, Mozeto AA, Ovalle ARC, Victoria RL, Silva CAR, Nogueira FB (1988) The fate of trace metals in suspended matter in a mangrove creek during a tidal cycle. Sci Total Environ 75:169–180

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115

    Article  Google Scholar 

  • MacDonald DD, Scottcarr R, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Dawn ES and Rebekka AL (2003) Development and applications of sediment quality criteria for managing contaminated sediment in British Columbia. MacDonald Environmental Sciences Ltd., 24-4800 Island Highway North Nanaimo, British Columbia V9T 1W6

  • MacFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environ Pollut 123:139–151

    Article  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  Google Scholar 

  • Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ Pollut 120:455–461

    Article  CAS  Google Scholar 

  • Mackey AP, Hodgkinson MC (1995) Concentrations and spatial distribution of trace metals in mangrove sediments from the Brisbane River, Australia. Environ Pollut 90:181–186

    Article  CAS  Google Scholar 

  • Maiti SK, Chowdhury A (2013) Effects of anthropogenic pollution on mangrove biodiversity: a review. J Environ Prot Ecol 4:1428–1434

    Article  Google Scholar 

  • Marchand C, Alberic P, Lallier-Verges E, Baltzer F (2006a) Distribution and characteristics of dissolved organic matter in mangrove sediment pore waters along the coastline of French Guiana. Biogeochemistry 81:59–75

    Article  Google Scholar 

  • Marchand C, Lallier-Verges E, Baltzer F, Alberic P, Cossa D, Baillif P (2006b) Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar Chem 98:1–17

    Article  CAS  Google Scholar 

  • Marchand C, Allenbach M, Lallier-Verges E (2011) Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma 160:444–456

    Article  CAS  Google Scholar 

  • Massolo S, Bignasca A, Sarkar SK, Chatterjee M, Bhattacharya BD, Alam A (2012) Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India). Environ Monit Assess 184:7561–7577

    Article  CAS  Google Scholar 

  • Mil-Homens M, Stevens RL, Abrantes F, Cato I (2006) Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res 26:1184–1205

    Article  Google Scholar 

  • Mukherjee D, Mukherjee A, Kumar B (2009) Chemical fractionation of metals in freshly deposited marine estuarine sediments of Sundarban ecosystem, India. Environ Geol 58:1757–1767

    Article  CAS  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in the sediments of the Rhine River. Geophys J R Astron Soc 2:108–118

    Google Scholar 

  • Nath B, Birch G, Chaudhuri P (2013) Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Sci Total Environ 463–464:667–674

    Article  Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87:253–264

    Article  CAS  Google Scholar 

  • NYSDEC (NewYork State Department of Environmental Conservation) (1999) Technical guidance for screening contaminated sediments. Division of Fish, Wildlife and Marine Resources, NYSDEC, p 45

    Google Scholar 

  • Ong Che R (1999) Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Mar Pollut Bull 39:269–279

    Article  Google Scholar 

  • Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208

    Article  CAS  Google Scholar 

  • Perdomo L, Ensminger I, Fernanda Espinosa L, Elster C, Wallner-kersanach M, Schnetter ML (1999) The mangrove ecosystem of the Ciénaga Grande de Santa Marta (Colombia): Observations on regeneration and trace metals in sediment. Mar Pollut Bull 37:393–403

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Ngoc Nam V, Ong JE, Primavera JH, Salmo SG III, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5:e10095

    Article  Google Scholar 

  • Preda M, Cox ME (2002) Trace metal occurrence and distribution in sediments and mangroves, Pumicestone region, southeast Queensland, Australia. Environ Int 28:433–49

    Article  CAS  Google Scholar 

  • Rahman MM, Chen Z, Naidu R (2009) Extraction of arsenic species in soils using microwave-assisted extraction detected by ion chromatography coupled to inductively coupled plasma mass spectrometry. Environ Geochem Health 31:93–102

    Article  CAS  Google Scholar 

  • Ramanathan AL, Subramanian V, Ramesh R, Chidambaram S, James A (1999) Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environ Geol 37:223–33

    Article  CAS  Google Scholar 

  • Ranjan RK, Ramanathan AL, Singh G, Chidambaram S (2008) Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, southeast coast of India. Environ Monit Assess 147:389–411

    Article  CAS  Google Scholar 

  • Ranjan RK, Routh J, Ramanathan AL (2010) Bulk organic matter characteristics in the Pichavaram mangrove-estuarine complex, south-eastern India. Appl Geochem 25:1176–1186

    Article  CAS  Google Scholar 

  • Ray AK, Tripathy SC, Patra S, Sarma VV (2006) Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environ Int 32:219–223

    Article  CAS  Google Scholar 

  • Reimann C, de Carital P (2000) Intrinsic flows of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091

    Article  CAS  Google Scholar 

  • Ridgway J, Shimmield G (2002) Estuaries as repositories of historical contamination and their impact on shelf seas. Estuar Coast Shelf Sci 55:903–928

    Article  CAS  Google Scholar 

  • Rogers KG, Goodbred SL Jr, Mondal DR (2013) Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges-Brahmaputra delta plain. Estuar Coast Shelf Sci 131:297–309

    Article  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, New York

    Book  Google Scholar 

  • Sappal SM, Ramanathan A, Ranjan RK, Singh G, Kumar A (2014) Rare earth elements as biogeochemical indicators in mangrove ecosystems (Pichavaram, Tamilnadu, India). J Sediment Res 84:781–791

    Article  CAS  Google Scholar 

  • Sarkar SK, Franciscovic-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Sarkar SK, Cabral H, Chatterjee M, Cardoso I, Bhattacharya AK, Satpathy KK, Alam MA (2008) Biomonitoring of heavy metals using the bivalve molluscs in Sunderban mangrove wetland, northeast coast of Bay of Bengal (India): possible risks to human health. CLEAN 36:187–194

    CAS  Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as reference element for determining trace metal enrichment in southern California coastal shelf sediments. Mar Environ Res 48:161–176

    Article  CAS  Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL, Ryan JD, Calder FD, Burney LC (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13:227–235

    Article  CAS  Google Scholar 

  • Shumilin E, Rodríguez Meza GD, Sapozhnikov D, Lutsarev S, Murrillo de Nava J (2005) Arsenic concentrations in the surface sediments of the Magdalena–Almejas Lagoon complex, Baja California Peninsula, Mexico. B Environ Contam Tox 74:493–500

    Article  CAS  Google Scholar 

  • Singh G, Ramanathan AL, Prasad MB (2005) Nutrient cycling in mangrove ecosystem: a brief overview. Int J Ecol Environ Sci 30:231–244

    Google Scholar 

  • Soto-Jimenez M, Paez-Osuna F (2001) Cd, Cu, Pb and Zn in lagoonal sediments from Mazatlan Harbor (SE Gulf of California): bioavailability and geochemical fractioning. B Environ Contam Tox 66:350–356

    Article  CAS  Google Scholar 

  • Souza MFL, Gomes VR, Freitas SS, Andrade RCB, Knoppers B (2009) Net ecosystem metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary, Piaui River (NE of Brazil). Estuar Coast Shelf Sci 32:111–122

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment- associated trace metals in an urban stream OAHU, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Tam NF, Yao MW (1998) Normalisation and heavy metal contamination in mangrove sediments. Sci Total Environ 216:33–39

    Article  CAS  Google Scholar 

  • Tam NF, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  CAS  Google Scholar 

  • Taylor S, McLennan S (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of pollution. Helgoländer Meeresun 33:566–575

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1997) Method 3051 A. Microwave assisted acid digestion of sediments, sludge’s, soils and oils. USEPA, U.S. Government Printing Office, Washington D.C, Available at: URL: http://www.epa.gov/SW-846/pdfs/3051a.pdf)

    Google Scholar 

  • Vane CH, Harrison I, Kim AW, Moss-Hayes V, Vickers BP, Hong K (2009) Organic and metal contamination in surface mangrove sediments of South China. Mar Pollut Bull 58:134–144

    Article  CAS  Google Scholar 

  • Wang Y, Qiu Q, Xin G, Yang Z, Zheng J, Ye Z, Li S (2013) Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ Monit Assess 185:5775–5787

    Article  CAS  Google Scholar 

  • Zhang FY (1995) Geochemistry of elements in surface sediments from the central South China Sea. Oceanol Limnol Sin 22:253–263 \(in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zhang J, Cai LZ, Chen M, Yuan DX (2004) Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay, China. Mar Pollut Bull 49:479–486

    Article  CAS  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  CAS  Google Scholar 

  • Zhou F, Guo HC, Hao ZJ (2007) Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: a GIS-based chemometric approach. Mar Pollut Bull 54:1372–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Asia-Pacific Network for Global Change Research, Japan project reference number ARCP2012-07CMY-Ramanathan (Formerly ARCP2011-17NMY-Mathukumalli). We thank Dr. Mahmood Hossain, Mr. Mohammad Raqibul Hasan Siddique, and Mr. Kushal Roy from Khulna University for their assistance in sample collection and field analysis. The authors are thankful to Council for Scientific and Industrial Research for providing Senior Research Fellowship to support the work. The authors are also thankful to Dr. Mohammad Mahmudur Rahman, University of South Australia for helping with ICP-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AL. Ramanathan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ramanathan, A., Prasad, M.B.K. et al. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Environ Sci Pollut Res 23, 8985–8999 (2016). https://doi.org/10.1007/s11356-016-6086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6086-6

Keywords

Navigation