Skip to main content
Log in

Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L−1 of alachlor and 25 mg L−1 of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L−1, whereas at 10 μg L−1, it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested that the concentration-dependent effect of alachlor mainly remains limited to biomass and growth inhibition without apparent changes of structural and functional characteristics measured. Our work also establishes the potential toxic effects of organic solvents on river biofilm in ecotoxicological experiments. For the ecotoxicological experiments, the alternative of dissolution in organic solvent followed by its evaporation, depositing the chemical on a glass surface prior to dissolution in river water used here, appears to allow exposure while minimizing the effect of organic solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antić N, Radišić M, Radović T, Vasiljević T, Grujić S, Petković A, Dimkić M, Laušević M (2014) Pesticide residues in the Danube river basin in Serbia—a survey during 2009–2011. Clean: Soil Air Water. doi:10.1002/clen.201200360

    Google Scholar 

  • Bahena CL, Martínez SS (2006) Photodegradation of chlorbromuron, atrazine, and alachlor in aqueous systems under solar irradiation. Int J Photoenergy (Article number 81808) 1-6

  • Battaglin W, Fairchild J (2002) Potential toxicity of pesticides measured in midwestern streams to aquatic organisms. Watater Sci Technol 45:95–103

    CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442

    Article  CAS  Google Scholar 

  • Bérard A (1996) Effect of organic four solvents on natural phytoplankton assemblages: consequences for ecotoxicological experiments on herbicides. B Environ Contam Tox 57:183–190

    Article  Google Scholar 

  • Blinn DW, Fredericksen A, Korte V (1980) Colonization rates and community structure of diatoms on three different rock substrata in a lotic system. Eur J Phycol 15:303–310

    Article  Google Scholar 

  • Böger P, Matthes B, SchmalfuB J (2000) Towards the primary target of chloroacetamides—new findings pave the way. Pest Manag Sci 56:497–508

    Article  Google Scholar 

  • Bonnet J-L, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Wiley Period Inc Environ Toxicol 22:78–91

    Article  CAS  Google Scholar 

  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné J-C (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72:551–556

    Article  CAS  Google Scholar 

  • Carder JP, Hoagland KD (1998) Combined effects of alachlor and atrazine on benthic algal communities in artificial streams. Environ Toxicol Chem 17:1415–1420

    Article  CAS  Google Scholar 

  • Chénier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on the nitrogen cycling and degradation of hexadecane by replicated river biofilms. Appl Environ Microbiol 69:5170–5177

    Article  CAS  Google Scholar 

  • Chesters G, Simsiman GV, Levy J, Alhajjar BJ, Fathulla RN, Harkin JM (1989) Environmental fate of alachlor and metolachlor. Rev Environ Contam Toxicol 110:1–74

    Article  CAS  Google Scholar 

  • Cho C-W, Thuy Pham T-P, Kim S, Kim Y-R, Jeon Y-C, Yun Y-S (2009) Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J Appl Phycol 21:683–689

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Compo J, Masiá A, Blasco C, Picó Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157

    Article  CAS  Google Scholar 

  • Congestri R, Di Pippo F, De Philippis R, Buttino I, Paradossi G, Albertano P (2006) Seasonal succession of phototrophic biofilms in an Italian wastewater treatment plant: biovolume, spatial structure and exopolysaccharides. Aquat Microb Ecol 45:301–312

    Article  Google Scholar 

  • Coquillé N, Jana G, Moreira A, Morin S (2015) Use of diatom motility features as endpoints of metolachlor toxicity. Aquat Toxicol 158:202–210

    Article  CAS  Google Scholar 

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the biological diatom index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indicators 9:621–650

    Article  CAS  Google Scholar 

  • Debenest T, Silvestre J, Coste M, Pinelli E (2010) Effects of pesticides on freshwater diatoms. Rev Environ Contam Toxicol 203:87–103

    CAS  Google Scholar 

  • Dorigo U, Bourrain X, Bérard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318:101–114

    Article  CAS  Google Scholar 

  • Dorigo U, Bérard A, Rimet F, Bouchez A, Montuelle B (2010) In situ assessment of periphyton recovery in a river contaminated by pesticides. Aquat Toxicol 98:396–406

    Article  CAS  Google Scholar 

  • El Jay A (1996a) Effects of organic solvents and solvent-atrazine interactions on two algae, Chlorella vulgaris and Selenastrum capricornutum. Arch Environ Contam Toxicol 31:84–90

  • El Jay A (1996b) Toxic effects of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. B Environ Contam Toxicol 57:191–198

    Article  Google Scholar 

  • Environment Canada (2010) Prairie and northern water quality monitoring

  • Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Cont Toxicol 32:353–357

    Article  CAS  Google Scholar 

  • Feminella JW, Hawkins CP (1995) Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J N Am Benthol Soc 14:465–509

    Article  Google Scholar 

  • Freeman C, Lock MA (1995) The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40:273–278

    Article  CAS  Google Scholar 

  • Foley ME, Sigler V, Gruden CL (2008) A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J 2:56–66

    Article  CAS  Google Scholar 

  • Guasch H, Muñoz I, Roses N, Sabater S (1997) Changes in atrazine toxicity throughout succession of stream periphyton communities. J Appl Phycol 9:137–146

    Article  CAS  Google Scholar 

  • Guasch H, Sabater S (1998) Light history influences the sensitivity to atrazine in periphytic algae. J Phycol 34:233–241

    Article  CAS  Google Scholar 

  • Hunt RW, Chinnasamy S, Bhatnagar A, Das KC (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, chlorella sorokinian. Appl Biochem Biotechnol 162:2400–2414

    Article  CAS  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59:1101–1110

    Article  CAS  Google Scholar 

  • Knapp CW, Graham DW, Berardesco G, deNoyelles JF, Cutak BJ, Larive CK (2003) Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems. Water Res 37:4761–4769

    Article  CAS  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570

    Article  CAS  Google Scholar 

  • Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of the microalgae chlorella minutissima: role of the concentration and frequence of administration. J Biotechnol 70:357–362

    Article  CAS  Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden (1990-1996). Sci Total Environ 216:227–251

    Article  CAS  Google Scholar 

  • Lane DJ (1991) rRNA sequencing. In: Stachenbradt GME (ed) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lawrence JR, Swerhone GDW, Neu TR (2000) A simple rotating annular reactor for replicated biofilm studies. J Microbiol Meth 42:215–224

    Article  CAS  Google Scholar 

  • Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47:634–641

    Article  CAS  Google Scholar 

  • Lawrence JR, Chénier M, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of the impacts of nickel, nutrients and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339

    Article  CAS  Google Scholar 

  • Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316

    Article  CAS  Google Scholar 

  • Ma J, Chen J (2005) How to accurately assay the algal toxicity of pesticides with low water solubility. Environ Pollut 136:267–273

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal scanning laser microscopy. Microb Ecol 37:225–237

    Article  CAS  Google Scholar 

  • Navakoudis E, Ioannidis NE, Dörnemann D, Kotzabasis K (2007) Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim Biophys Acta 1767:948–955

    Article  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    Article  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Böckelmann U, Lawrence JR (2005) Effect of CNP on composition and structure of lotic biofilms as detected with lectin-specific glycoconjugates. Aquat Microb Ecol 38:283–294

    Article  Google Scholar 

  • Noack U, Geffke T, Balasubramamian R, Papenbrock J, Braune M, Scheerbaum D (2003) Effects of the herbicide metazachlor on phytoplankton and periphyton communities in outdoor mesocosms. Acta Hydrochim Hydrobiol 31:482–490

    Article  CAS  Google Scholar 

  • Nusch EA (1980) A Comparison of different methods for chlorophyll and pheopigment analysis. Ergebn Limnol 14:14–36

    CAS  Google Scholar 

  • Okumura Y, Koyama J, Takaku H, Satoh H (2001) Influence of organic solvents on the growth of marine microalgae. Arch Environ Contam Toxicol 41:123–128

    Article  CAS  Google Scholar 

  • Osborne CA, Rees GN, Bernstein Y, Janssen PH (2006) New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Appl Environ Microbiol 72:1270–1278

    Article  CAS  Google Scholar 

  • Papadopoulou-Mourkidou E, Karpouzas DG, Patsias J, Kotopoulou A, Milothridou A, Kintzikoglou K, Vlachou P (2004) The potential of pesticides to contaminate the groundwater resources of the axios river basin in Macedonia, northern Greece. Part. Monitoring study in the north part of the basin. Sci Total Environ 321:127–146

    Article  CAS  Google Scholar 

  • Paule A, Lyautey E, Garabétian F, Rols J-L (2009) Autogenic versus environmental control during development of river biofilm. Ann Limnol Int J Lim 45:1–10

    Article  Google Scholar 

  • Paule A, Roubeix V, Lauga B, Durand R, Delmas F, Paul E, Rols J-L (2013) Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms. Aquat Toxicol 144–145:310–321

    Article  CAS  Google Scholar 

  • Paule A, Lamy A, Roubeix V, Delmas F, Rols J-L (2014) Influence of the natural growth environment on the sensitivity of phototrophic biofilm to herbicide. Environ Sci Pollut Res. doi:10.1007/s11356-014-3429-z

    Google Scholar 

  • Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178

    Article  Google Scholar 

  • Pesce S, Margoum C, Montuelle B (2010) In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res 44:1941–1949

    Article  CAS  Google Scholar 

  • Rimet F, Bouchez A (2011) Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecol Indic 11:489–499

    Article  CAS  Google Scholar 

  • Robarts RD, Wicks RJ (1989) [Methyl-3H] thymidine macromolecular incorporation and lipid labeling: their significance to DNA labeling during measurements of aquatic bacterial growth rate. Limnol Oceanogr 34:213–222

    Article  CAS  Google Scholar 

  • Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) Monitoring of selected priority and emerging contaminants in the Guadalquivir river and other related surface waters in the province of Jaén, South East Spain. Sci Total Environ 479–480:247–257

    Article  CAS  Google Scholar 

  • Roubeix V, Mazzella N, Delmas F, Coste M (2010) In situ evaluation of herbicide effects on the composition of river periphytic diatom communities in a region of intensive agriculture. Vie et Milieu Life Environ 60:233–241

    Google Scholar 

  • Roubeix V, Mazzella N, Mechin B, Coste M, Delmas F (2011) Impact of the herbicide metolachlor on river periphytic diatoms: experimental comparison of descriptors at different biological organization levels. Ann Limnol Int J Limnol 47:239–249

    Article  Google Scholar 

  • Roubeix V, Fauvelle V, Tison-Rosebery J, Mazzella N, Coste M, Delmas F (2012) Assessing the impact of chloroacetanilide herbicides and their metabolites on periphyton in the Leyre River (SW France) via short term growth inhibition tests on autochthonous diatoms. J Environ Monit 14:1655–1663

    Article  CAS  Google Scholar 

  • Singh S, Datta P (2005) Growth and survival potentials of immobilized diazotrophic cyanobacterial isolates exposed to common ricefield herbicides. World J Microbiol Biotechnol 21:441–446

    Article  CAS  Google Scholar 

  • Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  CAS  Google Scholar 

  • Spawn R, Hoagland KD, Siegfried B (1997) Effects of alachlor on an algal community from a midwestern agricultural stream. Environ Toxicol Chem 16:785–793

    Article  CAS  Google Scholar 

  • Stamper DM, Tuovinen OH (1998) Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor. Crit Rev Microbiol 24:1–22

    Article  CAS  Google Scholar 

  • Stratton GW (1985) The influence of solvent type on solvent-pesticide interactions in bioassays. Arch Environ Con Toxicol 14:651–658

    Article  CAS  Google Scholar 

  • Taghavi L, Probst JL, Merlina G, Marchand AL, Durbe G, Probst A (2010) Flood event impact on pesticide transfer in a small agricultural catchment (Montoussé at Auradé, south west France). Int J Environ Anal Chem 90:390–405

    Article  CAS  Google Scholar 

  • Thakkar M, Randhawa V, Wei L (2013) Comparative responses of two species of marine phytoplankton to metolachlor exposure. Aquat Toxicol 126:198–206

    Article  CAS  Google Scholar 

  • Tlili A, Dorigo U, Montuelle B, Margoum C, Carluer N, Gouy V, Bouchez A, Bérard A (2008) Responses of chronically contaminated biofilms to short pulses of diuron: an experimental study simulating flooding events in a small river. Aquat Toxicol 87:252–263

    Article  CAS  Google Scholar 

  • Tlili A, Bérard A, Roulier JL, Volat B, Montuelle B (2010) PO4 3− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177

    Article  CAS  Google Scholar 

  • Tlili A, Montuelle B, Bérard A, Bouchez A (2011) Impact of chronic and acute pesticide exposures on periphyton communities. Sci Total Environ 409:2102–2113

    Article  CAS  Google Scholar 

  • Vallotton N, Moser D, Eggen RIL, Junghans M, Chèvre N (2008) S-metolachlor pulse exposure on the alga Scenedesmus vacuolatus: effects during exposure and the subsequent recovery. Chemosphere 73:395–400

    Article  CAS  Google Scholar 

  • Vercraene-Eairmal M, Lauga B, Saint Laurent S, Mazzella N, Boutry S, Simon M, Karama S, Delmas F, Duran R (2010) Diuron biotransformation and its effects on biofilm bacterial community structure. Chemosphere 81:837–843

    Article  CAS  Google Scholar 

  • Villeneuve A, Larroudé S, Humbert J-F (2011a) Herbicide contamination of freshwater ecosystems: impact on microbial communities. In: Stoytcheva M (ed) Pesticides - formulations, effects, fate, pp. 285-312

  • Villeneuve A, Montuelle B, Bouchez A (2011b) Effects of flow regime and pesticides on periphytic communities: evolution and role of biodiversity. Aquat Toxicol 102:123–133

    Article  CAS  Google Scholar 

  • Waiser MJ, Robarts RD (1997) Impacts of a herbicide and fertilizers on the microbial community of a saline prairie lake. Can J Fish Aquat Sci 54:320–329

    Article  CAS  Google Scholar 

  • Walsh GE, Merrill RG (1984) Algal bioassays of industrial and energy process effluents. In: Shubert LE (ed) Algae as ecological indicators. Academic Press, FL, pp 330–360

    Google Scholar 

  • Wetzel RG (1975) Primary production. In: Whitton BA (ed) River ecology. Blackwell Sci. Publ, Oxford, pp 230–247

    Google Scholar 

Download references

Acknowledgments

This work was funded by the French National Programme EC2CO Environmental Microbiology and a grant for foreign exchange (ATUPS) from the University Paul Sabatier. We are grateful to Environment Canada. We thank S. Karama for assistance with the T-RFLP method. We also thank V. Tumber for chlorophyll a and bacterial production analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paule.

Additional information

Responsible editor: Thomas Braunbeck

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paule, A., Roubeix, V., Swerhone, G.D.W. et al. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure. Environ Sci Pollut Res 23, 4282–4293 (2016). https://doi.org/10.1007/s11356-015-5141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5141-z

Keywords

Navigation