Skip to main content

Advertisement

Log in

The variations of aluminium species in mountainous forest soils and its implications to soil acidification

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008–2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al3+ compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al3+ and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al3+ were determined in the summer, and the lowest in spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A horizon:

Organo-mineral soil horizon

Al(X)1+ :

Contains mainly Al(org.)≤1+ and Al(OH)2 +, Al(SO4)+, AlF2 +, etc.

Al(Y)2+ :

Contains Al(OH)2+, (AlF)2+, etc.

Al3+ :

Contains Al3+ and transformed Al hydroxy-polymers

AlH2O :

Total water-extractable Al

ANOVA:

Analysis of variance

au CM:

Aluminic Cambisols

B horizon:

Spodic or cambic mineral horizon

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

EMEP:

European Monitoring and Evaluation Programme

et PZ:

Entic Podzol

F horizon:

Fermentation organic horizon

H horizon:

Humified organic horizon

H. G.:

Homogenous group

ha PZ:

Haplic Podzol

HPLC-IC:

High-performance liquid chromatography equipped with ionic column

IC:

Ion chromatography

ICP:

Forest Manual International Co-operative Programme Forest Manual

NOx:

Nitrogen oxides

PRP:

Permanent research plots

PVC:

Polyvinyl chloride

rpm:

Revolutions per minute

SOM:

Soil organic matter

Std. dev.:

Standard deviation

VOSS:

Type of throughfall collector with a zig-zag adapter

w/v :

Weight per volume

WRB:

World Reference Base for Soil Resources

References

  • Albers D, Migg S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164

    Article  CAS  Google Scholar 

  • Alvarez E (1992) Geochemical aspects of aluminium in forest soils in Galicia (N. W. Spain). Biogeochemistry 16:167–180

    Article  CAS  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253

    Article  Google Scholar 

  • Balcar V, Špulák O, Kacálek D, Kuneš I (2012) Climatic conditions in the Jizerka experimental plot - I. Precipitation and soil moisture. Zprávy Lesnického Výzkumu 57:74–81 (in Czech)

    Google Scholar 

  • Batysta M, Borůvka L, Drábek O, Tejnecký V, Šebek O (2010) Laboratory assay of aluminium transport through intact soil sample under controlled conditions. Soil Water Res 5:69–74

    CAS  Google Scholar 

  • Binkley D, Fisher R (2012) Ecology and management of forest soils, 4th edn. Wiley, New York

    Google Scholar 

  • Binkley D, Giardina CH (1998) Why do tree species affect soils? The Warp and Woof of tree-soil interactions. Biogeochemistry 42:89–106

    Article  Google Scholar 

  • Berg B, McClaugherty Ch (2008) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Berlin, ISBN: 978-3-540-74922-6

  • Borůvka L, Mládková L, Drábek O (2005) Factors controlling spatial distribution of soil acidification and Al forms in forest soils. J Inorg Biochem 99:1796–1806

    Article  Google Scholar 

  • Borůvka L, Nikodem A, Drábek O, Vokurková P, Tejnecký V, Pavlů L (2009) Assessment of soil aluminium pools along three mountainous elevation gradients. J Inorg Biochem 103:1449–1458

    Article  Google Scholar 

  • Cháb J, Stráník Z, Eliáš M (2007) Geological Map of the Czech Republic 1: 500 000. Czech Geological Survey, Prague

    Google Scholar 

  • Cikánková J, Koblížková E, Mertl J, Pokorný J, Ponocná T, Rollerová M, Trnková E (2013) Report on theEnvironmentofthe Czech Republic. CENIA, Prague (in Czech) p. 173, ISBN 9788085087192

  • Clarke N, Zlindra D, Ulrich E, Mosello R, Derome J, Derome K, König N, Lövblad G, Draaijers G, Hansen K, Thimonier A, Waldner P (2010) Sampling and Analysis of Deposition. Part XIV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests 66. UNECE, ICP Forests, Hamburg

  • De Schrijver A, Geudens G, Augusto L, Stealens J, Martens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux. Oecologia 153:663–674

    Article  Google Scholar 

  • Dijkstra FA, Fitzhugh RD (2003) Aluminumsolubility and mobility in relation to organiccarbon in surfacesoilsaffected by sixtree species ofthenortheastern United States. Geoderma 114:33–47

    Article  CAS  Google Scholar 

  • Dlouhá S, Borůvka L, Pavlů L, Tejnecký V, Drábek O (2009) Comparison of Al speciation and other soil characteristics between meadow, young forest and old forest stands. J Inorg Biochem 103:1459–1464

    Article  Google Scholar 

  • Drábek O, Borůvka L, Pavlů L, Nikodem A, Pírková I, Vacek O (2007) Grass cover on forest clear-cut areas ameliorates some soil chemical properties. J Inorg Biochem 101:1224–1233

    Article  Google Scholar 

  • Drábek O, Mládková L, Borůvka L, Száková J, Nikodem A, Němeček K (2005) Comparison of water-soluble and exchangeable forms of Al in acid forest soils. J Inorg Biochem 99:1788–1795

    Article  Google Scholar 

  • Evans CD, Chapman P, Clark J, Monteith MD, Cresser SM (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Chang Biol 12:2044–2053

    Article  Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  CAS  Google Scholar 

  • Fox TR (1995) The influence of low-molecular-weight organic acids on properties and processes in forest soils. Carbon forms and functions in forest soils, pp 43–62. Soil Science Society of America, Madison

  • Holst T, Mayer H, Schindler D (2004) Microclimate within beech stands - Part II: thermal conditions. Eur J For Res 123:13–28

    Article  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: A review. Z Pflanzenernähr Bodenkd 158:419–428

    Article  CAS  Google Scholar 

  • Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separatelythe toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54:323–333

    Article  CAS  Google Scholar 

  • Likens GE, Bormann EH (1995) Biogeochemistry of a Forest Ecosystem. 2nd ed. Springer-Verlag, New York, 159

  • Lundstrom US, Giesler R (1995) Use of the aluminium species composition in soil solution as an indicator of acidification. Effects of acid deposition and tropospheric ozone on forest ecosystems in Sweden. Ecol Bull 44:114–122

    Google Scholar 

  • Markewitz D, Richter DD (1998) The bio in aluminum and silicon geochemistry. Biogeochemistry 42:235–252

    Article  CAS  Google Scholar 

  • Mládková L, Borůvka L, Drábek O, Vašát R (2006) Factors influencing distribution of different Al forms in forest soils of the Jizerské hory Mts. J Forest Sci 52:87–92

    Google Scholar 

  • Nikodem A, Kodešová R, Drábek O, Bubeníčková L, Borůvka L, Pavlů L, Tejnecký V (2010) A numerical study of the impact of precipitation redistribution in a beech forest canopy on water and aluminum transport in a Podzol. Vadose Zone J 9:238–251

    Article  CAS  Google Scholar 

  • Nikodem A, Pavlů L, Kodešová R, Borůvka L, Drábek O (2013) Study of podzolization process under different vegetation cover in the Jizerské hory Mts. Region. Soil Water Res 8:1–12

    CAS  Google Scholar 

  • Oulehle F, Hruška J (2005) Tree species (Picesabies and Fagussilvatica) effect on soilwateracidification and aluminium chemistryatsitessubjected to long-termacidification in theOreMts. Czech Republic. J Inorg Biochem 99:1822–1829

    Article  CAS  Google Scholar 

  • Puhe J, Ulrich B (2001) Global climate change and human impacts on forest ecosystems. Ecol Stud 143:592

    Google Scholar 

  • Remrová M, Císlerová M (2010) Analysis of climate change effects on evapotranspiration in the watershed uhlířská in the Jizera mountains. Soil Water Res 5:28–38

    Google Scholar 

  • Ritter E, Dalsgaard L, Einhorn KS (2005) Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For Ecol Manag 206:15–33

    Article  Google Scholar 

  • Rothe A, Huber C, Kreutzer K, Weis W (2002) Deposition and soil leaching in stands of Norway spruce and European beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45

    Article  CAS  Google Scholar 

  • Rustad LE, Cronan CS (1995) Biogeochemicalcontrols on aluminumchemistry in the O horizonof a redspruce (PicearubensSarg.) stand in central Maine, USA. Biogeochemistry 29:107–129

    Article  CAS  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Špičková J, Dobešová I, Vach M, Skřivan P, Mihaljevič M, Burian M (2008) The influence of the limestone-quarry Čertovy schody (Czech Republic) on the precipitation chemistry and atmospheric deposition. Chemie der Erde-Geochem 68:105–115

    Article  Google Scholar 

  • Tejnecký V, Bradová M, Borůvka L, Němeček K, Šebek O, Nikodem A, Zenáhlíková J, Rejzek J, Drábek O (2013) Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. Sci Total Environ 442:165–171

    Article  Google Scholar 

  • Tejnecký V, Drábek O, Borůvka L, Nikodem A, Kopáč J, Vokurková P, Šebek O (2010) Seasonal variation of water extractable aluminium forms in acidified forest organic soils under different vegetation cover. Biogeochemistry 101:151–163

    Article  Google Scholar 

  • Tejnecký V, Drábek O, Nikodem A, Vokurková P, Němeček K, Borůvka L (2014) Fast determination of water extractable organic carbon from forest soils. Zpravy Lesnickeho Vyzkumu 59:155–159

    Google Scholar 

  • Thimonier A (1998) Measurement of atmospheric deposition under forest canopies: some recommendations for equipment and sampling design. Environ Monit Assess 52:353–387

    Article  CAS  Google Scholar 

  • Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496

    Article  CAS  Google Scholar 

  • Umemura T, Usami Y, Aizawa SI, Tsunoda KI, Satake KI (2003) Seasonal change in the level and the chemical forms of aluminum in soil solution under a Japanese cedar forest. Sci Total Environ 317:149–157

    Article  CAS  Google Scholar 

  • Van Hees PAW, Lundström US (2000) Equilibrium models of aluminium and iron complexation with different organic acids in soil solution. Geoderma 94:201–221

    Article  Google Scholar 

  • Vestin JLK, Norström SH, Bylund D, Mellander PE, Lundstrom US (2008) Soil solution and stream water chemistry in a forested catchment I: dynamics. Geoderma 144:256–270

    Article  CAS  Google Scholar 

  • Walker WJ, Cronan CS, Bloom PR (1990) Aluminum solubility in organic soil horizons from northern and southern forested watersheds. Soil Sci Soc Am J 54:369–374

    Article  CAS  Google Scholar 

  • WRB (2006) World Reference Base for Soil Resources 2006 - a framework for international classification, correlation and communication. World Reference Base for Soil Resources

  • Zbíral J (1995) Analýza půd I – jednotné pracovní postupy. ÚKZÚZ Brno (in Czech)

Download references

Acknowledgments

The research was supported by grants from the Internal Grant Agency of Czech University of Life Sciences Prague (CIGA) (no. 20132005), and the Ministry of Agriculture (no. QI92A216). We are also grateful to Foundation “Nadání Josefa, Marie a Zdeňky Hlávkových” for financial support. Special thanks belong to Petr Skřivan (Geological Institute AV ČR) for valuable advice. The authors declare that they have no conflict of interest.

Ethical Statement

The all co-authors were informed about submitting of manuscript “The variations of aluminium species in mountainous forest soils and its implications to soil acidification” by Bradová, M., Tejnecký, V., Borůvka, L., Němeček, K., Ash, Ch., Šebek, O., Svoboda, M., Zenáhlíková, J. and Drábek, O. All co-authors consent with submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Bradová.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradová, M., Tejnecký, V., Borůvka, L. et al. The variations of aluminium species in mountainous forest soils and its implications to soil acidification. Environ Sci Pollut Res 22, 16676–16687 (2015). https://doi.org/10.1007/s11356-015-4855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4855-2

Keywords

Navigation