Skip to main content
Log in

Photochemical oxidation of chloride ion by ozone in acid aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0–2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 – OH – Cl(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3 and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl oxidation. The dependencies of the products formation rates on the concentrations of O3 and H+ have been studied. The chemical mechanism of Cl oxidation and Cl2 emission and ClO3 formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2 anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2  + O3 → ClO + O2 + Cl and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H+ + Cl + ClO3 and HOCl + H+ + Cl ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The Hatta number has been calculated with the formula Ha = \( \sqrt{D_{O3}{k}_{1,O3}/{k}_L} \) (Beltran 2004), where D O3 is ozone diffusion coefficient in aqueous solution, D O3 = 2 × 10−9 m2 s−1 (Beltran 2004), k L is the mass transfer coefficient, in the analogous reactors k L = 3 × 10−4 m s−1 (Benbelkacem et al. 2003; Khudoshin et al. 2008), k 1, O3 is the apparent pseudo-first-order rate constant of ozone reactions, in our experimental conditions k 1, O3 < 0.1 s−1. If Ha < 0.3, then ozone reactions are characterized as “slow”, and reactions in the interface film can be neglected compared with the reactions in the bulk of the liquid (Benbelkacem et al. 2003; Charpentier 1981; Sotelo et al. 1989).

  2. Note that Fig. 5 in (Levanov et al. 2003a) presents the values of the apparent rate constant k app, L mol−1 min−1, of the thermal reaction between O3 and Cl in aqueous solution, which is connected with the chlorine emission rate by the relation (dnCl2/dt)/V liq = k app∙[Cl]∙HO3∙C(O3)∙1000/48, where [Cl] = 1 M is chloride ion concentration in reaction solution, H O3 = 0.24 is dimensionless Henry’s constant of ozone (Levanov et al. 2003a), and C(O3), g/m3, is ozone concentration in the gas flow at the inlet to the reactor.

  3. The photolysis primary stage (R1) was approximated as a reaction of first kinetic order with respect to ozone. Its rate constant was calculated with the formula k 1 = φ254 · N Φ · ε254 · ln10/(60 · NA), s−1, where φ254 = 0.55 (Reisz et al. 2003) is the primary quantum yield, N Φ = (4.34 ± 0.06) × 1020 photons L−1 min−1 is the rate of UV photons absorption by the reaction solution in the experiments of this work, and ε254 = 3000 L mol−1 cm−1 is the molar absorptivity of aqueous ozone solution, on the basis of (Bader and Hoigné 1982; Forni et al. 1982; Gilbert and Hoigne 1983; Hart et al. 1983; Hoigné 1998; Hoigne and Bader 1976; Kilpatrick et al. 1956; Taube 1957; von Sonntag and von Gunten 2012).

  4. The rate constant k 4 was obtained with the use of ozone Henry’s law constant H O3 = 0.24 (Levanov et al. 2003a). If Henry’s law constant H O3 = 0.16 is used in the kinetic calculations, then the constant k 4 is recalculated correspondingly.

  5. It is worth noting that the formation of chlorate ion on interaction of O3 with Cl(aq) does not contradict the possibility of chlorate reduction with chloride in strong acid media (Gordon et al. 1972; Greenwood and Earnshaw 1997; Schmitz 2000),

    ClO3  + 5Cl + 6H+ → 3Cl2 + 3H2O and ClO3  + Cl + 2H+ → ½Cl2 + ClO2 + H2O.

    Quantitative estimates based on the kinetic data (Crisci and Lenzi 1971; Deshwal and Lee 2004; Hong et al. 1967; Sant'Anna et al. 2012) show that under the conditions of our experiments at pH 0–2, the rate of chlorate disappearance owing to these reactions is negligibly small.

  6. Notice that the set of reactions (R1–R18) and the scheme of Fig. 6 account for the formation of only main products Cl2 and ClO3 . The formation of an important minor product perchlorate ion is not described by the reactions and the scheme (and has not been investigated in this work), although it may well take place under the conditions of our experiments.

References

  • Adam LC, Fábián I, Suzuki K, Gordon G (1992) Hypochlorous acid decomposition in the pH 5–8 region. Inorg Chem 31:3534–3541

    Article  CAS  Google Scholar 

  • Alekseev VN (1969) Quantitative analysis. Mir Publishers, Moscow

    Google Scholar 

  • Anderson A, Sun TS (1970) Raman spectra of molecular crystals I. Chlorine, bromine, and iodine. Chem Phys Lett 6:611–616. doi:10.1016/0009-2614(70)85239-3

    Article  CAS  Google Scholar 

  • Atkinson R et al (2007) Evaluated kinetic and photochemical data for atmospheric chemistry: volume III—gas phase reactions of inorganic halogens. Atmos Chem Phys 7:981–1191. doi:10.5194/acp-7-981-2007

    Article  CAS  Google Scholar 

  • Bader H, Hoigné J (1982) Colorimetric method for the measurement of aqueous ozone based on the decolorization of indigo derivatives. In: Masschelein WJ (ed) Ozonation manual for water and wastewater treatment. John Wiley and Sons, Chichester, UK, pp 169–172

    Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1949) Reactions of ferrous and ferric ions with hydrogen peroxide. Nature 163:692–694. doi:10.1038/163692a0

    Article  CAS  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951a) Reactions of ferrous and ferric ions with hydrogen peroxide Part I.—The ferrous ion reaction. Trans Faraday Soc 47:462–500. doi:10.1039/TF9514700462

    Article  CAS  Google Scholar 

  • Barb WG, Baxendale JH, George P, Hargrave KR (1951b) Reactions of ferrous and ferric ions with hydrogen peroxide Part II.—The ferric ion reaction. Trans Faraday Soc 47:591–616. doi:10.1039/TF9514700591

    Article  CAS  Google Scholar 

  • Bartlett WP, Margerum DW (1999) Temperature dependencies of the Henry's Law constant and the aqueous phase dissociation constant of bromine chloride. Env Sci Technol 33:3410–3414. doi:10.1021/es990300k

    Article  CAS  Google Scholar 

  • Bauer D, D'Ottone L, Hynes AJ (2000) O 1D quantum yields from O3 photolysis in the near UV region between 305 and 375 nm. Phys Chem Chem Phys 2:1421–1424. doi:10.1039/B000159G

    Article  CAS  Google Scholar 

  • Baxendale JH, Wilson JA (1957) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356

    Article  CAS  Google Scholar 

  • Beach SD, Smith IWM, Tuckett RP (2002) Rate constants for the reaction of Cl atoms with O3 at temperatures from 298 to 184 K. In J Chem Kinet 34:104–109. doi:10.1002/kin.10033

    Article  CAS  Google Scholar 

  • Beltran FJ (2004) Ozone reaction kinetics for water and wastewater systems. . lewis publishers, CRC press LLC, boca raton, Florida

    Google Scholar 

  • Benbelkacem H, Cano H, Mathe S, Debellefontaine H (2003) Maleic acid ozonation: reactor modeling and rate constants determination ozone. Sci Eng 25:13–24. doi:10.1080/713610647

    CAS  Google Scholar 

  • Biedenkapp D, Hartshorn LG, Bair EJ (1970) The O (1D) + H2O reaction. Chem Phys Lett 5:379–381. doi:10.1016/0009-2614(70)85172-7

    Article  CAS  Google Scholar 

  • Bielski BHJ (1993) A pulse-radiolysis study of the reaction of ozone with cl2- radical-anion in aqueous-solutions. Radiat Phys Chem 41:527–530

    Article  CAS  Google Scholar 

  • Bjergbakke E, Navaratnam S, Parsons BJ, Swallow AJ (1981) Reaction between HO2 and chlorine IN aqueous solution. J Am Chem Soc 103:5926–5928. doi:10.1021/ja00409a059

    Article  CAS  Google Scholar 

  • Bräuer P, Tilgner A, Wolke R, Herrmann H (2013) Mechanism development and modelling of tropospheric multiphase halogen chemistry: the CAPRAM halogen module 2.0 (HM2). J Atmos Chem 70:19–52. doi:10.1007/s10874-013-9249-6

    Article  CAS  Google Scholar 

  • Broek VD (1862) Ueber die zersetzung der chlorwasserstoffsäure durch ozone (notizen). J Prakt Chem 86:317–318. doi:10.1002/prac.18620860142

    Google Scholar 

  • Buxton GV, Bydder M, Salmon GA (1998) Reactivity of chlorine atoms in aqueous solution. Part 1. the equilibrium Cl• + Cl– = Cl2. J Chem Soc Faraday Trans 94:653–657. doi:10.1039/a707377a

    Article  CAS  Google Scholar 

  • Buxton GV, Subhani MS (1972a) Radiation chemistry and photochemistry of oxychlorine ions. Part 1. radiolysis of aqueous solutions of hypochlorite and chlorite ions. J Chem Soc Faraday Trans 1(68):947–957

    Article  Google Scholar 

  • Buxton GV, Subhani MS (1972b) Radiation chemistry and photochemistry of oxychlorine ions. Part 2. Photodecomposition of aqueous solutions of hypochlorite ions. J Chem Soc Faraday Trans 1(68):958–969

    Article  Google Scholar 

  • Cahill JE, Leroi GE (1969) Raman spectra of solid chlorine and bromine. J Chem Phys 51:4514–4519. doi:10.1063/1.1671821

    Article  CAS  Google Scholar 

  • Caldin EF (2001) The mechanisms of fast reactions in solution. Ios Press, Amsterdam

    Google Scholar 

  • Charpentier J-C (1981) Mass-transfer rates in gas–liquid absorbers and reactors. In: Drew TB, Cokelet GR, Hoopes JW, Vermeulen T (eds) Advances in chemical engineering, vol.11, vol 11. Academic Pres, New York, pp 1–133. doi:10.1016/S0065-2377(08)60025-3

    Google Scholar 

  • Connick RE (1947) The interaction of hydrogen peroxide and hypochlorous acid in acidic solutions containing chloride ion. J Am Chem Soc 69:1509–1514. doi:10.1021/ja01198a074

    Article  CAS  Google Scholar 

  • Crisci P, Lenzi F (1971) The kinetics and mechanism of the chloride–chlorate reaction in moderately concentrated solutions of HClO4 and H2SO4 at 25 °C. Can J Chem 49:2552–2562. doi:10.1139/v71-421

    Article  CAS  Google Scholar 

  • Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Env Sci Tech 39:1569–1575

    Article  CAS  Google Scholar 

  • Deshwal BR, Lee HK (2004) Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate. J Hazard Mater 108:173–182. doi:10.1016/j.jhazmat.2003.12.006

    Article  CAS  Google Scholar 

  • Duverney MR (1962) Rayons restants infrarouges, de monocristaux de chlorate et de bromate de sodium. C R Acad Sci 254:1954–1956

    CAS  Google Scholar 

  • Emmenegger F, Gordon G (1967) The rapid interaction between sodium chlorite and dissolved chlorine. Inorg Chem 6:633–635. doi:10.1021/ic50049a048

    Article  CAS  Google Scholar 

  • Fabian I, Gordon G (1992) Iron (III)-catalyzed decomposition of the chlorite ion: an inorganic application of the quenched stopped-flow method. Inorg Chem 31:2144–2150. doi:10.1021/ic00037a030

    Article  CAS  Google Scholar 

  • Forni L, Bahnemann D, Hart EJ (1982) Mechanism of the hydroxide ion-initiated decomposition of ozone in aqueous solution. J Phys Chem 86:255–259. doi:10.1021/j100391a025

    Article  CAS  Google Scholar 

  • Gilbert E, Hoigne J (1983) Messung von ozon in wasserwerken vergleich der dpd- und indigo-methode gas- und wasserfach. Wasser, Abwasser 124:527–531

    CAS  Google Scholar 

  • Goldstein S, Aschengrau D, Diamant Y, Rabani J (2007) Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors env. Sci Technol 41:7486–7490. doi:10.1021/es071379t

    Article  CAS  Google Scholar 

  • Gordon G, Kieffer RG, Rosenblatt DH (1972) The chemistry of chlorine dioxide. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 15, vol 15. Wiley, NewYork, pp 201–286. doi:10.1002/9780470166161.ch3

    Chapter  Google Scholar 

  • Gordon G, Tachiyashiki S (1991) Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6–10. Envirol Sci Technol 25:468–474. doi:10.1021/es00015a014

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, Second Editionth edn. Butterworth-Heinemann, Oxford. doi:10.1016/B978-0-7506-3365-9.50003-1

    Google Scholar 

  • Hart EJ, Sehested K, Holcman J (1983) Molar absorptivities of ultraviolet and visible bands of ozone in aqueous solutions. Anal Chem 55:46–49. doi:10.1021/ac00252a015

    Article  CAS  Google Scholar 

  • Hatta S (1932) Technological Reports of Tohoku University 10:613–662

  • Held AM, Halko DJ, Hurst JK (1978) Mechanisms of chlorine oxidation of hydrogen-peroxide. J Am Chem Soc 100:5732–5740. doi:10.1021/ja00486a025

    Article  CAS  Google Scholar 

  • Hoigné J (1998) Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes. In: Hrubec J (ed) The Handbook of Environmental Chemistry. Vol. 5, Part C. Quality and Treatment of Drinking Water II, vol 5 / 5C. The Handbook of Environmental Chemistry. Springer Verlag, Berlin - Heidelberg, pp 83–141. doi: 10.1007/978-3-540-68089-5_5

  • Hoigne J, Bader H (1976) Role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res 10:377–386

    Article  CAS  Google Scholar 

  • Hoigné J, Bader H, Haag WR, Staehelin J (1985) Rate constants of reactions of ozone with organic and inorganic compounds in water. III. Inorg Comp Rad Water Res 19:993–1004

    Google Scholar 

  • Hollenberg JL, Dows DA, Spectrochim A (1960) Vibrational spectra of sodium chlorate. Spectrochim Acta 16:1155–1164. doi:10.1016/0371-1951(60)80220-2

    Article  CAS  Google Scholar 

  • Hong CC, Lenzi F, Rapson WH (1967) The kinetics and mechanism of the chloride-chlorate reaction. Can J Chem Eng 45:349–355. doi:10.1002/cjce.5450450605

    Article  CAS  Google Scholar 

  • Hong CC, Rapson WH (1968) Kinetics of disproportionation of chlorous acid. Can J Chem 46:2053–2060. doi:10.1139/v68-335

    Article  CAS  Google Scholar 

  • Hunt JP, Taube H (1952) The photochemical decomposition of hydrogen peroxide quantum yields, tracer and fractionation effects. J Am Chem Soc 74:5999–6002. doi:10.1021/ja01143a052

    Article  CAS  Google Scholar 

  • Ianni JC (2006) Kintecus , Windows Version 3.9, www.kintecus.com.

  • Jayson GG, Parsons BJ, Swallow AJ (1973) Some simple, highly reactive, inorganic chlorine derivatives in aqueous-solution. their formation using pulses of radiation and their role in mechanism of fricke dosimeter. J Chem Soc Faraday Trans I:1597–1607

  • Jia Z, Margerum DW, Francisco JS (2000) General-acid-catalyzed reactions of hypochlorous acid and acetyl hypochlorite with chlorite ion. Inorg Chem 39:2614–2620. doi:10.1021/ic991486r

    Article  CAS  Google Scholar 

  • Kang N, Jackson WA, Dasgupta PK, Anderson TA (2008) Perchlorate production by ozone oxidation of chloride in aqueous and dry systems. Sci Total Environ 405:301–309

    Article  CAS  Google Scholar 

  • Khudoshin AG, Mitrofanova AN, Lunin VV (2008) Kinetics and mechanism of the reactions of ozone with guaiacol, veratrol, and veratrol derivatives. Russ Chem Bull 57:283–288. doi:10.1007/s11172-008-0043-6

    Article  CAS  Google Scholar 

  • Kieffer RG, Gordon G (1968a) Disproportionation of chlorous acid. I. Stoichiometry Inorg Chem 7:235–239. doi:10.1021/ic50060a013

    Article  CAS  Google Scholar 

  • Kieffer RG, Gordon G (1968b) Disproportionation of chlorous acid. II. Kinet Inorg Chem 7:239–244. doi:10.1021/ic50060a014

    Article  CAS  Google Scholar 

  • Kilpatrick ML, Herrick CC, Kilpatrick M (1956) The decomposition of ozone in aqueous solution. J Am Chem Soc 78:1784–1789. doi:10.1021/ja01590a003

    Article  CAS  Google Scholar 

  • Kiwi J, Lopez A, Nadtochenko V (2000) Mechanism and kinetics of the oh-radical intervention during fenton oxidation in the presence of a significant amount of radical scavenger (cl-). Environ Sci Technol 34:2162–2168. doi:10.1021/es991406i

    Article  CAS  Google Scholar 

  • Klaning UK, Wolff T (1985) Laser flash photolysis of hclo, clo, hbro, and bro in aqueous solution reactions of cl- and br-atoms. Ber Bunsenges Phys Chem 89:243–245

    Article  Google Scholar 

  • Knipping EM, Dabdub D (2002) Modeling Cl2 formation from aqueous NaCl particles: evidence for interfacial reactions and importance of Cl2 decomposition in alkaline solution. J Geophys Res 107:4360. doi:10.1029/2001jd000867

    Article  CAS  Google Scholar 

  • Knipping EM et al (2000) Experiments and simulations of ion-enhanced interfacial chemistry on aqueous nacl aerosols. Science 288:301–306. doi:10.1126/science.288.5464.301

    Article  CAS  Google Scholar 

  • Koppenol WH, Stanbury DM, Bounds PL (2010) Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic Biol Med 49:317–322. doi:10.1016/j.freeradbiomed.2010.04.011

    Article  CAS  Google Scholar 

  • Langford CH, Carey JH (1975) The charge transfer photochemistry of the hexaaquoiron (iii) ion, the chloropentaaquoiron (iii) ion, and the μ-dihydroxo dimer explored with tert-butyl alcohol scavenging. Can J Chem 53:2430–2435. doi:10.1139/v75-344

    Article  CAS  Google Scholar 

  • Laskin A, Wang H, Robertson WH, Cowin JP, Ezell MJ, Finlayson-Pitts BJ (2006) A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J Phys Chem A 110:10619–10627. doi:10.1021/jp063263+

    Article  CAS  Google Scholar 

  • Levanov AV, Antipenko EE, Lunin VV (2012a) Primary stage of the reaction between ozone and chloride ions in aqueous solution: can chloride ion oxidation by ozone proceed via electron transfer mechanism? Russ J Phys Chem A 86:584–589. doi:10.1134/S0036024412040164

    Article  CAS  Google Scholar 

  • Levanov AV, Antipenko EE, Lunin VV (2012b) Primary stage of the reaction between ozone and chloride ions in aqueous solution: oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer. Russ J Phys Chem A 86:519–522. doi:10.1134/s0036024412030193

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Antipenko EE, Lunin VV (2006a) The kinetics of reaction between permanganate and chlorine ions in acid solutions. Russ J Phys Chem 80:726–731. doi:10.1134/s0036024406050104

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Antipenko EE, Lunin VV (2006b) The oxidation of chlorine ions under the joint action of ozone and permanganate ions. Russ J Phys Chem 80:556–561. doi:10.1134/s0036024406040121

    Google Scholar 

  • Levanov AV, Kuskov IV, Antipenko EE, Lunin VV (2008) The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride. Russ J Phys Chem A 82:2045–2050. doi:10.1134/s0036024408120133

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Antipenko EE, Lunin VV (2012c) Stoichiometry and products of ozone reaction with chloride ion in an acidic medium. Russ J Phys Chem A 86:757–762. doi:10.1134/S0036024412050202

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Koiaidarova KB, Antipenko EI, Lunin VV (2006c) Interaction between ozone and the chloride ion in sulfuric acid solutions up to 6-M concentration. Kinet Catal 47:682–685. doi:10.1134/s0023158406050053

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Koiaidarova KB, Zosimov AV, Antipenko EE, Lunin VV (2005) Catalysis of the reaction of ozone with chloride ions by metal ions in an acidic medium. Kinet Catal 46:138–143. doi:10.1007/s10975-005-0021-z

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Zosimov AV, Antipenko EE, Lunin VV (2003a) Acid catalysis in reaction of ozone with chloride ions. Kinet Catal 44:740–746. doi:10.1023/B:KICA.0000009047.90252.2d

    Article  CAS  Google Scholar 

  • Levanov AV, Kuskov IV, Zosimov AV, Antipenko EE, Lunin VV (2003b) Photometric determination of chlorine in a gas flow in the presence of ozone. J Anal Chem 58:439–441. doi:10.1023/A:1024069912606

    Article  CAS  Google Scholar 

  • Levanov AV, Sakharov DV, Dashkova AV, Antipenko EE, Lunin VV (2011) Synthesis of hydrogen polyoxides H2O4 and H2O3 and their characterization by Raman spectroscopy. Eur J Inorg Chem 2011:5144–5150. doi:10.1002/ejic.201100767

    Article  CAS  Google Scholar 

  • Liu Q, Margerum DW (2001) Equilibrium and kinetics of bromine chloride hydrolysis. Environ Sci Technol 35:1127–1133

    Article  CAS  Google Scholar 

  • Makower B, Bray WC (1933) The rate of oxidation of hydrogen peroxide by chlorine in the presence of hydrochloric acid. J Am Chem Soc 55:4765–4776. doi:10.1021/ja01339a006

    Article  CAS  Google Scholar 

  • Maric D, Burrows JP, Meller R, Moortgat GK (1993) A study of the UV-visible absorption spectrum of molecular chlorine. J Photochem Photobiol A Chem 70:205–214

    Article  CAS  Google Scholar 

  • Mialocq JC, Barat F, Gilles L, Hickel B, Lesigne B (1973) Flash photolysis of chlorine dioxide in aqueous solution. J Phys Chem 77:742–749. doi:10.1021/j100625a003

    Article  CAS  Google Scholar 

  • Miller FA, Carlson GL, Bentley FF, Jones WH (1960) Infrared spectra of inorganic ions in the cesium bromide region (700–300 cm−1). Spectrochim Acta 16:135–235. doi:10.1016/0371-1951(60)80077-X

    Article  CAS  Google Scholar 

  • Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294. doi:10.1021/ac60068a007

    Article  CAS  Google Scholar 

  • Nadtochenko VA, Kiwi J (1998) Photolysis of feoh2+ and fecl2+ in aqueous solution. Photodissociation Kinetics and Quantum Yields Inorg Chem 37:5233–5238. doi:10.1021/ic9804723

    CAS  Google Scholar 

  • Naumov S, von Sonntag C (2011) Standard gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations. Environ Sci Technol 45:9195–9204. doi:10.1021/es2018658

    Article  CAS  Google Scholar 

  • Nissenson P, Thomas JL, Finlayson-Pitts BJ, Dabdub D (2008) Sensitivity and uncertainty analysis of the mechanism of gas-phase chlorine production from NaCl aerosols in the MAGIC model. Atmos Environ 42:6934–6941. doi:10.1016/j.atmosenv.2008.04.041

    Article  CAS  Google Scholar 

  • Oum KW, Lakin MJ, DeHaan DO, Brauers T, Finlayson-Pitts BJ (1998) Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279:74–76. doi:10.1126/science.279.5347.74

    Article  CAS  Google Scholar 

  • Peintler G, Nagypal I, Epstein IR (1990) Systematic design of chemical oscillators. 60. kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid. J Phys Chem 94:2954–2958. doi:10.1021/j100370a040

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry Critical Reviews in Environmental Science and Technology 36:1–84 doi:10.1080/10643380500326564

  • Quiroga SL, Perissinotti LJ (2005) Reduced mechanism for the 366 nm chlorine dioxide photodecomposition in N2-saturated aqueous solutions. J Photochem Photobiol A Chemistry 171:59–67. doi:10.1016/j.jphotochem.2004.09.006

    Article  CAS  Google Scholar 

  • Rabai G, Orban M (1993) General model for the chlorite ion based chemical oscillators. J Phys Chem 97:5935–5939. doi:10.1021/j100124a026

    Article  CAS  Google Scholar 

  • Rao B, Anderson TA, Redder A, Jackson WA (2010) Perchlorate formation by ozone oxidation of aqueous chlorine / oxy-chlorine species: role of clxoy radicals. Env Sci Technol 44:2961–2967

    Article  CAS  Google Scholar 

  • Reisz E, Schmidt W, Schuchmann HP, von Sonntag C (2003) Photolysis of ozone in aqueous solutions in the presence of tertiary butanol. Environ Sci Technol 37:1941–1948. doi:10.1021/es0113100

    Article  CAS  Google Scholar 

  • Sander R et al (2011a) The atmospheric chemistry box model CAABA/MECCA-3.0. Geosci Model Dev 4:373–380. doi:10.5194/gmd-4-373-201

    Article  Google Scholar 

  • Sander SP et al. (2011) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 17. Pasadena: JPL Publication 10–6, Jet Propulsion Laboratory, 2011.

  • Sant'Anna RTP, Santos CMP, Silva GP, Ferreira RJR, Oliveira AP, Côrtes CES, Faria RB (2012) Kinetics and mechanism of chlorate-chloride reaction. J Braz Chem Soc 23:1543–1550

    Article  Google Scholar 

  • Schmitz G (2000) Kinetics of the halates-halides-halogens reactions; apparent differences and fundamental similarities. In: Ribnikar S, Anic S (eds) Proceedings of the 5th International conference on fundamental and applied aspects of physical chemistry. Society of Physical Chemists, Belgrade, pp 129–140

    Google Scholar 

  • Smith GD, Molina LT, Molina MJ (2000) Temperature dependence of O (1D) quantum yields from the photolysis of ozone between 295 and 338 nm. J Phys Chem A 104:8916–8921. doi:10.1021/jp001006d

    Article  CAS  Google Scholar 

  • Sotelo JL, Beltrán FJ, Benitez FJ, Beltrán-Heredia J (1989) Henry's law constant for the ozone-water system. Water Res 23:1239–1246. doi:10.1016/0043-1354(89)90186-3

    Article  CAS  Google Scholar 

  • Stanbury DM (1989) Reduction potentials involving inorganic free radicals in aqueous solution. in advances in inorganic chemistry, vol 33. pp 69–138

  • Su F, Calvert JG, Lindley CR, Uselman WM, Shaw JH (1979) Fourier transform infrared kinetic study of hypochlorous acid and its absolute integrated infrared band intensities. J Phys Chem 83:912–920. doi:10.1021/j100471a006

    Article  CAS  Google Scholar 

  • Suzuki M, Yokoyama T, Ito M (1969) Raman spectrum and intermolecular forces of the chlorine crystal. J Chem Phys 50:3392–3398

    Article  CAS  Google Scholar 

  • Taniguchi N, Takahashi K, Matsumi Y (2000) Photodissociation of O3 around 309 nm. J Phys Chem A 104:8936–8944. doi:10.1021/jp001706i

    Article  CAS  Google Scholar 

  • Taube H (1957) Photochemical reactions of ozone in solution. Trans Farad Soc 53:656–665. doi:10.1039/TF9575300656

    Article  CAS  Google Scholar 

  • Taube H, Dodgen H (1949) Applications of radioactive chlorine to the study of the mechanisms of reactions involving changes in the oxidation state of chlorine. J Am Chem Soc 71:3330–3336. doi:10.1021/ja01178a016

    Article  CAS  Google Scholar 

  • Thomas JL, Jimenez-Aranda A, Finlayson-Pitts BJ, Dabdub D (2006) Gas-phase molecular halogen formation from nacl and nabr aerosols: when are interface reactions important? J Phys Chem A 110:1859–1867. doi:10.1021/jp054911c

    Article  CAS  Google Scholar 

  • Thomas JL, Stutz J, Lefer B, Huey LG, Toyota K, Dibb JE, von Glasow R (2011) Modeling chemistry in and above snow at Summit, Greenland—part 1: model description and results. Atmos Chem Phys 11:4899–4914. doi:10.5194/acp-11-4899-2011

    Article  CAS  Google Scholar 

  • von Sonntag C, von Gunten U (2012) Chemistry of ozone in water and wastewater treatment. From basic principles to applications. IWA Publishing, London

    Google Scholar 

  • Wagman DD et al. (1982) The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data, 1982, 11, Supplement №2. National Bureau of Standards, Washington D. C.

  • Wang TX, Kelley MD, Cooper JN, Beckwith RC, Margerum DW (1994) Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species. Inorg Chem 33:5872–5878

    Article  CAS  Google Scholar 

  • Wang TX, Margerum DW (1994) Kinetics of reversible chlorine hydrolysis: temperature dependence and general-acid/base-assisted mechanisms. Inorg Chem 33:1050–1055. doi:10.1021/ic00084a014

    Article  CAS  Google Scholar 

  • Wayne RP (1987) The photochemistry of ozone. Atmos Environ 21:1683–1694. doi:10.1016/0004-6981(87)90107-7

    Article  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–677. doi:10.1063/1.555965

    Article  CAS  Google Scholar 

  • Yeatts LRB, Taube H (1949) The kinetics of the reaction of ozone and chloride ion in acid aqueous solution. J Am Chem Soc 71:4100–4105

    Article  CAS  Google Scholar 

  • Yu X-Y, Barker JR (2003) Hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions I. Chem Mech J Phys Chem A 107:1313–1324. doi:10.1021/jp0266648

    Article  CAS  Google Scholar 

  • Yu XY (2004) Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. J Phys Chem Ref Data 33:747–763. doi:10.1063/1.1695414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge partial support from M.V. Lomonosov Moscow State University Program of Development.

Conflict of Interest

The authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Levanov.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Electronic Supporting Information available:

The experimental and calculated dependencies of chlorine emission and chlorate formation rates on concentrations of H+ in reaction solution and O3 in initial gases (Figs. S1-S4).

The effect of variation of volumetric mass transfer coefficient kLa on calculated rates of chlorine emission and chlorate formation (Fig. S5).

Optimized values of coefficients k18 and n18 as functions of Henry’s law constant of ozone HO3 and volumetric mass transfer coefficient kLa (Fig. S6).

Summary of the reactions included in the mechanism of photochemical chloride oxidation with ozone (Table S1).

Effect of addition to the reaction set (R1 – R17) of various reactions, and also processes of HO2 disappearance and OH generation, on the calculated rates of chlorine emission and chlorate formation. (Tables S2-S4).

ESM 1

(DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, A.V., Isaykina, O.Y., Amirova, N.K. et al. Photochemical oxidation of chloride ion by ozone in acid aqueous solution. Environ Sci Pollut Res 22, 16554–16569 (2015). https://doi.org/10.1007/s11356-015-4832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4832-9

Keywords

Navigation