Skip to main content
Log in

Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For the last 10 years, engineered nanomaterials (ENMs) have raised interest to industrials due to their properties. They are present in a large variety of products from cosmetics to building materials through food additives, and their value on the market was estimated to reach $3 trillion in 2014 (Technology Strategy Board 2009). TiO2 NMs represent the second most important part of ENMs production worldwide (550–5500 t/year). However, a gap of knowledge remains regarding the fate and the effects of these, and consequently, impact and risk assessments are challenging. This is due to difficulties in not only characterizing NMs but also in selecting the NM properties which could contribute most to ecotoxicity and human toxicity. Characterizing NMs should thus rely on various analytical techniques in order to evaluate several properties and to crosscheck the results. The aims of this review are to understand the fate and effects of TiO2 NMs in water, sediment, and soil and to determine which of their properties need to be characterized, to assess the analytical techniques available for their characterization, and to discuss the integration of specific properties in the Life Cycle Assessment and Risk Assessment calculations. This study underlines the need to take into account nano-specific properties in the modeling of their fate and effects. Among them, crystallinity, size, aggregation state, surface area, and particle number are most significant. This highlights the need for adapting ecotoxicological studies to NP-specific properties via new methods of measurement and new metrics for ecotoxicity thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aillon KL, Xie Y, El-Gendy N et al (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466. doi:10.1016/j.addr.2009.03.010

    CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2014) Assessing the environmental risks of silver from clothes in an urban area. Hum Ecol Risk Assess Int J 20:1008–1022. doi:10.1080/10807039.2012.691412

    CAS  Google Scholar 

  • Ashcroft JM, Gu W, Zhang T, et al. (2008) TiO2 nanoparticles as a soft X-ray molecular probe. Chem Commun 2471–2473. doi:10.1039/b801392f

  • Auffan M, Rose J, Bottero J-Y et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. doi:10.1038/nnano.2009.242

    CAS  Google Scholar 

  • Battin TJ, Kammer FVD, Weilhartner A et al (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104. doi:10.1021/es9017046

    CAS  Google Scholar 

  • Bendixen N, Losert S, Adlhart C et al (2014) Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A 1334:92–100. doi:10.1016/j.chroma.2014.01.066

    CAS  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393. doi:10.1016/j.chemosphere.2010.07.007

    CAS  Google Scholar 

  • Bennett SW, Zhou D, Mielke R, Keller AA (2012) Photoinduced disaggregation of TiO2 nanoparticles enables transdermal penetration. PLoS One 7:e48719. doi:10.1371/journal.pone.0048719

    CAS  Google Scholar 

  • Bogner A, Thollet G, Basset D et al (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104:290–301. doi:10.1016/j.ultramic.2005.05.005

    CAS  Google Scholar 

  • Boncagni NT, Otaegui JM, Warner E et al (2009) Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol 43:7699–7705. doi:10.1021/es900424n

    CAS  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC et al (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanoparticle Res 11:1361–1374. doi:10.1007/s11051-008-9523-8

    CAS  Google Scholar 

  • Buffle J, van Leeuwen HP (1992) Environmental particles. Lewis Publishers, Chelsea

    Google Scholar 

  • Buffle J, van Leeuwen HP (1993) Environmental particles. Lewis Publishers, Chelsea

    Google Scholar 

  • Bundschuh T, Knopp R, Kim JI (2001) Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems. Colloids Surf Physicochem Eng Asp 177:47–55

    CAS  Google Scholar 

  • Bundschuh M, Zubrod JP, Englert D et al (2011) Effects of nano-TiO2 in combination with ambient UV-irradiation on a leaf shredding amphipod. Chemosphere 85:1563–1567. doi:10.1016/j.chemosphere.2011.07.060

    CAS  Google Scholar 

  • Burleson D, Driessen M, Penn RL (2004) On the characterization of environmental nanoparticles. J Environ Sci Health, Part A 39:2707–2753. doi:10.1081/ESE-200027029

    Google Scholar 

  • Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134. doi:10.1016/j.jcis.2007.01.074

    CAS  Google Scholar 

  • Chen LX, Rajh T, Wang Z, Thurnauer MC (1997) XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions. J Phys Chem B 101:10688–10697

    CAS  Google Scholar 

  • Chen G, Liu X, Su C (2011) Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir 27:5393–5402. doi:10.1021/la200251v

    CAS  Google Scholar 

  • Chen G, Liu X, Su C (2012a) Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environ Sci Technol 46:7142–7150. doi:10.1021/es204010g

    CAS  Google Scholar 

  • Chen L, Zhou L, Liu Y et al (2012b) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162. doi:10.1016/j.ecoenv.2012.07.019

    CAS  Google Scholar 

  • Chen Z, Wang Y, Ba T et al (2014) Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett 226:314–319. doi:10.1016/j.toxlet.2014.02.020

    CAS  Google Scholar 

  • Cho W-S, Duffin R, Thielbeer F et al (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–477. doi:10.1093/toxsci/kfs006

    CAS  Google Scholar 

  • Cho EJ, Holback H, Liu KC et al (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110. doi:10.1021/mp300697h

    CAS  Google Scholar 

  • Chowdhury I, Cwiertny DM, Walker SL (2012) Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ Sci Technol 46:6968–6976. doi:10.1021/es2034747

    CAS  Google Scholar 

  • Chowdhury I, Walker SL, Mylon SE (2013) Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter. Environ Sci: Processes Impacts 15:275. doi:10.1039/c2em30680h

    CAS  Google Scholar 

  • Domingos RF, Baalousha MA, Ju-Nam Y et al (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284. doi:10.1021/es900249m

    CAS  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Google Scholar 

  • Donaldson K, Schinwald A, Murphy F et al (2013) The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46:723–732. doi:10.1021/ar300092y

    CAS  Google Scholar 

  • Doucet FJ, Lead JR, Maguire L et al (2005) Visualisation of natural aquatic colloids and particles—a comparison of conventional high vacuum and environmental scanning electron microscopy. J Environ Monit 7:115. doi:10.1039/b413832e

    CAS  Google Scholar 

  • Dubascoux S, Le Hécho I, Hassellöv M et al (2010) Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: history, development and applications. J Anal At Spectrom 25:613–623. doi:10.1039/b927500b

    CAS  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693. doi:10.1021/es060847g

    CAS  Google Scholar 

  • Eberhart J-P (1997) Analyse structurale et chimique des matériaux. Dunod, Paris

    Google Scholar 

  • Egerton TA, Tooley IR (2014) Physical characterization of titanium dioxide nanoparticles. Int J Cosmet Sci 36:195–206. doi:10.1111/ics.12113

    CAS  Google Scholar 

  • European Commission (2013) Commission delegated regulation (EU) No 1363/2014 of 12 December 2013 amending Regulation (EU) No 1169/2011 of the European Parliament and of Council on the provision of food information to consumers as regards the definition of “engineered nanomaterials.” 1363/2013:3.

  • Fabricius A-L, Duester L, Meermann B, Ternes TA (2014) ICP-MS-based characterization of inorganic nanoparticles—sample preparation and off-line fractionation strategies. Anal Bioanal Chem 406:467–479. doi:10.1007/s00216-013-7480-2

    CAS  Google Scholar 

  • Fang Q, Shi X, Zhang L et al (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904. doi:10.1016/j.jhazmat.2014.10.039

    CAS  Google Scholar 

  • Fedotov PS, Vanifatova NG, Shkinev VM, Spivakov BY (2011) Fractionation and characterization of nano- and microparticles in liquid media. Anal Bioanal Chem 400:1787–1804. doi:10.1007/s00216-011-4704-1

    CAS  Google Scholar 

  • Filella M, Zhang J, Newman ME, Buffle J (1997) Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids Surf Physicochem Eng Asp 120:27–46

    CAS  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810. doi:10.1007/s11095-010-0073-2

    CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B et al (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359. doi:10.1021/es802628n

    CAS  Google Scholar 

  • Gao Y, Luo Z, He N, Wang MK (2013) Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment. J Nanoparticle Res 15:1681–1690. doi:10.1007/s11051-013-1681-7

    Google Scholar 

  • George S, Gardner H, Seng EK et al (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48:6374–6382. doi:10.1021/es405768n

    CAS  Google Scholar 

  • Gibson CT, Turner IJ, Roberts CJ, Lead JR (2007) Quantifying the dimensions of nanoscale organic surface layers in natural waters. Environ Sci Technol 41:1339–1344. doi:10.1021/es061726j

    CAS  Google Scholar 

  • Gmoshinski IV, Khotimchenko SA, Popov VO et al (2013) Nanomaterials and nanotechnologies: methods of analysis and control. Russ Chem Rev 82:48–76. doi:10.1070/RC2013v082n01ABEH004329

    Google Scholar 

  • Godinez IG, Darnault CJG (2011) Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45:839–851. doi:10.1016/j.watres.2010.09.013

    CAS  Google Scholar 

  • Gondikas AP, von der Kammer F, Reed RB et al (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the Old Danube recreational lake. Environ Sci Technol 48:5415–5422. doi:10.1021/es405596y

    CAS  Google Scholar 

  • Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Software 25:320–332. doi:10.1016/j.envsoft.2009.08.011

    Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013a) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    CAS  Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013b) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287. doi:10.1002/etc.2177

    CAS  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619. doi:10.1016/j.chemosphere.2014.07.049

    CAS  Google Scholar 

  • Gurkirpal SM (2012) The chronic toxicity of titanium dioxide nanoparticles to the freshwater amphipod hyalella azteca. Theses and dissertations (Comprehensive). Paper 839. http://scholars.wlu.ca/etd/839

  • Hamilton RF, Wu N, Porter D et al (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35. doi:10.1186/1743-8977-6-35

    Google Scholar 

  • Hassellöv M, Lyvén B, Haraldsson C, Sirinawin W (1999) Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICPMS. Anal Chem 71:3497–3502. doi:10.1021/ac981455y

    Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361. doi:10.1007/s10646-008-0225-x

    Google Scholar 

  • Heithmar EM (2011) Screening methods for metal-containing nanoparticles in water. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-11/096

  • Helfrich A, Brüchert W, Bettmer J (2006) Size characterisation of Au nanoparticles by ICP-MS coupling techniques. J Anal At Spectrom 21:431–434. doi:10.1039/b511705d

    CAS  Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. doi:10.1021/es103300g

    CAS  Google Scholar 

  • Horst AM, Neal AC, Mielke RE et al (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298. doi:10.1128/AEM.00324-10

    CAS  Google Scholar 

  • Hotze EM, Bottero J-Y, Wiesner MR (2010) Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir 26:11170–11175. doi:10.1021/la9046963

    CAS  Google Scholar 

  • Huijbregts M, Hauschild M, Jolliet O, et al. (2010) USEtoxTM. http://www.usetox.org/sites/default/files/support-tutorials/user_manual_usetox.pdf

  • International Organization for Standardization (2008) Nanotechnologies - Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate. ISOTS 276872008 7

  • ISO (2006a) ISO 14040:2006 Environmental management—Life cycle assessment - Principles and framework. ISOTC 207SC 5 23

  • ISO (2006b) ISO 14044:2006 Environmental management - Life cycle assessment—requirements and guidelines. ISOTC 207SC 5 46

  • Jang H, Kim S, Kim S (2007) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanoparticle Res 3:141–147

    Google Scholar 

  • Jiang J, Oberdörster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi:10.1080/17435390701882478

    CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM et al (2009) Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33. doi:10.1186/1743-8977-6-33

    Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. doi:10.1016/j.scitotenv.2008.06.042

    CAS  Google Scholar 

  • Kaegi R, Wagner T, Hetzer B et al (2008) Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Water Res 42:2778–2786. doi:10.1016/j.watres.2008.02.009

    CAS  Google Scholar 

  • Kalčíková G, Englert D, Rosenfeldt RR et al (2014) Combined effect of UV-irradiation and TiO2-nanoparticles on the predator–prey interaction of gammarids and mayfly nymphs. Environ Pollut 186:136–140. doi:10.1016/j.envpol.2013.11.028

    Google Scholar 

  • Keller AA, Wang H, Zhou D et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi:10.1021/es902987d

    CAS  Google Scholar 

  • Kertész Z, Szikszai Z, Gontier E et al (2005) Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 231:280–285. doi:10.1016/j.nimb.2005.01.071

    Google Scholar 

  • Kim J, Shan W, Davies SHR et al (2009) Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process. Environ Sci Technol 43:5488–5494. doi:10.1021/es900342q

    CAS  Google Scholar 

  • Kim K-T, Klaine SJ, Kim SD (2014) Acute and chronic response of daphnia magna exposed to TiO2 nanoparticles in agitation system. Bull Environ Contam Toxicol 93:456–460. doi:10.1007/s00128-014-1295-5

    CAS  Google Scholar 

  • Kobayashi N, Naya M, Endoh S et al (2009) Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 264:110–118. doi:10.1016/j.tox.2009.08.002

    CAS  Google Scholar 

  • Kumar SA, Lo P-H, Chen S-M (2008) Electrochemical synthesis and characterization of TiO2 nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis. Nanotechnology. doi:10.1088/0957-4484/19/25/255501

    Google Scholar 

  • Kuyper CL, Budzinski KL, Lorenz RM, Chiu DT (2006a) Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy. J Am Chem Soc 128:730–731. doi:10.1021/ja0569252

    CAS  Google Scholar 

  • Kuyper CL, Fujimoto BS, Zhao Y et al (2006b) Accurate sizing of nanoparticles using confocal correlation spectroscopy. J Phys Chem B 110:24433–24441. doi:10.1021/jp064865w

    CAS  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi:10.1016/j.scitotenv.2012.04.073

    CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26. doi:10.1016/j.jhazmat.2014.03.014

    CAS  Google Scholar 

  • Lecoanet HF, Bottero J-Y, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169. doi:10.1021/es0352303

    CAS  Google Scholar 

  • Ledin A, Karlsson S, Düker A, Allard B (1994) Measurements in situ of concentration and size distribution of colloidal matter in deep groundwaters by photon correlation spectroscopy. Water Res 28:1539–1545. doi:10.1016/0043-1354(94)90220-8

    CAS  Google Scholar 

  • Lee W-M, An Y-J (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544. doi:10.1016/j.chemosphere.2012.12.033

    CAS  Google Scholar 

  • Lekki J, Stachura Z, Dąbroś W et al (2007) On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 260:174–177. doi:10.1016/j.nimb.2007.02.021

    CAS  Google Scholar 

  • Li Bassi A, Cattaneo D, Russo V et al (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys. doi:10.1063/1.2061894

    Google Scholar 

  • Li M, Czymmek KJ, Huang CP (2011) Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazard Mater 187:502–508. doi:10.1016/j.jhazmat.2011.01.061

    CAS  Google Scholar 

  • Li S, Wallis LK, Ma H, Diamond SA (2014) Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk? Sci Total Environ 466–467:800–808. doi:10.1016/j.scitotenv.2013.07.059

    Google Scholar 

  • Lin P-C, Lin S, Wang PC, Sridhar R (2014a) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726. doi:10.1016/j.biotechadv.2013.11.006

    Google Scholar 

  • Lin X, Li J, Ma S et al (2014b) Toxicity of TiO2 nanoparticles to escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9:e110247. doi:10.1371/journal.pone.0110247

    Google Scholar 

  • Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48:3281–3292. doi:10.1021/es405132z

    CAS  Google Scholar 

  • Liu X, Chen G, Keller AA, Su C (2013) Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate. Environ Sci: Processes Impacts 15:169. doi:10.1039/c2em30625e

    CAS  Google Scholar 

  • Lopez-Serrano A, Munos Olivas R, Sanz Landaluze J, Carmen C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56. doi:10.1039/C3AY40517F

    CAS  Google Scholar 

  • Lozano O, Mejia J, Tabarrant T et al (2012) Quantification of nanoparticles in aqueous food matrices using particle-induced X-ray emission. Anal Bioanal Chem 403:2835–2841. doi:10.1007/s00216-012-5895-9

    CAS  Google Scholar 

  • Luo P, Morrison I, Dudkiewicz A et al (2013) Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy. J Microsc 250:32–41. doi:10.1111/jmi.12014

    CAS  Google Scholar 

  • Luo ZX, Wang ZH, Xu B, Sarakiotis IL, Du Laing G, Yan CZ (2014) Measurement and characterization of engineered titanium dioxide nanoparticles in the environment. J Zhejiang Univ Sci A 15(8):593–605

    CAS  Google Scholar 

  • Ma H, Brennan A, Diamond SA (2012) Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ Toxicol Chem 31:2099–2107. doi:10.1002/etc.1916

    CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:1–15. doi:10.1155/2013/942916

    Google Scholar 

  • Mansfield CM, Alloy MM, Hamilton J et al (2015) Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight. Chemosphere 120:206–210. doi:10.1016/j.chemosphere.2014.06.075

    CAS  Google Scholar 

  • Meena R, Kumar S, Paulraj R (2015) Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain. J Nanoparticle Res. doi:10.1007/s11051-015-2868-x

    Google Scholar 

  • Meesters JAJ, Koelmans AA, Quik JTK et al (2014) Multimedia modeling of engineered nanoparticles with simpleBox4nano: model definition and evaluation. Environ Sci Technol 48:5726–5736. doi:10.1021/es500548h

    CAS  Google Scholar 

  • Mielke RE, Priester JH, Werlin RA et al (2013) Differential growth of and nanoscale TiO2 accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa. Appl Environ Microbiol 79:5616–5624. doi:10.1128/AEM.01680-13

    CAS  Google Scholar 

  • Ming H, Ma Z, Huang H et al (2011) Nanoporous TiO2 spheres with narrow pore size distribution and improved visible light photocatalytic abilities. Chem Commun 47:8025–8027. doi:10.1039/C1CC12557E

    CAS  Google Scholar 

  • Money ES, Reckhow KH, Wiesner MR (2012) The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation. Sci Total Environ 426:436–445. doi:10.1016/j.scitotenv.2012.03.064

    CAS  Google Scholar 

  • Money ES, Barton LE, Dawson J et al (2014) Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver. Sci Total Environ 473–474:685–691. doi:10.1016/j.scitotenv.2013.12.100

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453. doi:10.1021/es7029637

    CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM et al (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240

    CAS  Google Scholar 

  • Nesic J, Rtimi S, Laub D et al (2014) New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues. Colloids Surf B Biointerfaces 123:593–599. doi:10.1016/j.colsurfb.2014.09.060

    CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350. doi:10.1016/j.scitotenv.2012.02.041

    CAS  Google Scholar 

  • O’Brien CS (2003) A mathematical model for colloidal aggregation. Graduate theses and dissertations. http://scholarcommons.usf.edu/etd/1441

  • Oberdürster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Math Phys Eng Sci 358:2719–2740. doi:10.1098/rsta.2000.0680

    Google Scholar 

  • Olabarrieta J, Zorita S, Peña I et al (2012) Aging of photocatalytic coatings under a water flow: long run performance and TiO2 nanoparticles release. Appl Catal B Environ 123–124:182–192. doi:10.1016/j.apcatb.2012.04.027

    Google Scholar 

  • Ottofuelling S, Von Der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ Sci Technol 45:10045–10052. doi:10.1021/es2023225

    CAS  Google Scholar 

  • Petosa AR, Brennan SJ, Rajput F, Tufenkji N (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46:1273–1285. doi:10.1016/j.watres.2011.12.033

    CAS  Google Scholar 

  • Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24:6659–6667. doi:10.1021/la7039916

    CAS  Google Scholar 

  • Philippe A, Schaumann GE (2014) Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS One 9:e90559. doi:10.1371/journal.pone.0090559

    Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1–11. doi:10.1007/s11051-012-1109-9

    Google Scholar 

  • Popović ZV, Dohčević-Mitrović Z, Šćepanović M et al (2011) Raman scattering on nanomaterials and nanostructures. Ann Phys 523:62–74. doi:10.1002/andp.201000094

    Google Scholar 

  • Pottier A, Cassaignon S, Chanéac C et al (2003) Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J Mater Chem 13:877–882. doi:10.1039/b211271j

    CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB et al (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303. doi:10.1093/toxsci/kfj099

    CAS  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine River. Environ Sci Technol 46:6705–6713. doi:10.1021/es204530n

    CAS  Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A et al (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178. doi:10.1038/nnano.2011.10

    CAS  Google Scholar 

  • Pyell U (2010) Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31:814–831. doi:10.1002/elps.200900555

    CAS  Google Scholar 

  • Quaranta G, Adam V (2015) Nano TiO2 life cycle assessment perspective. Encyclopedia of Nanotechnology, p 15. doi:10.1007/978-94-007-6178-0_100983-1

  • Quik JTK, Vonk JA, Hansen SF et al (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37:1068–1077. doi:10.1016/j.envint.2011.01.015

    CAS  Google Scholar 

  • Quik JTK, Stuart MC, Wouterse M et al (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31:1019–1022. doi:10.1002/etc.1783

    CAS  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M et al (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279. doi:10.1016/j.watres.2013.09.036

    CAS  Google Scholar 

  • Reed RB, Higgins CP, Westerhoff P et al (2012) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal Spectrom 27:1093–1100. doi:10.1039/c2ja30061c

    CAS  Google Scholar 

  • Ridley MK, Hackley VA, Machesky ML (2006) Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 22:10972–10982. doi:10.1021/la061774h

    CAS  Google Scholar 

  • Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33:624–634. doi:10.1016/j.envint.2007.01.004

    Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. doi:10.1007/s11367-008-0038-4

    CAS  Google Scholar 

  • Rottman J, Sierra-Alvarez R, Shadman F (2013) Real-time monitoring of nanoparticle retention in porous media. Environ Chem Lett 11:71–76. doi:10.1007/s10311-012-0381-3

    CAS  Google Scholar 

  • Salamon AW (2013) The current world of nanomaterial characterization: discussion of analytical instruments for nanomaterial characterization. Environ Eng Sci 30:101–108. doi:10.1089/ees.2012.0330

    CAS  Google Scholar 

  • Salieri B (2013) The challenges and the limitations in life cycle impact assessment for metal oxide nanoparticles, a case study on nano-TiO2. Dissertation, University of Bologna, Italy. http://amsdottorato.unibo.it/5227/1/Beatrice_Salieri_Tesi.pdf

  • Samontha A, Shiowatana J, Siripinyanond A (2011) Particle size characterization of titanium dioxide in sunscreen products using sedimentation field-flow fractionation–inductively coupled plasma–mass spectrometry. Anal Bioanal Chem 399:973–978. doi:10.1007/s00216-010-4298-z

    CAS  Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ et al (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488

    CAS  Google Scholar 

  • Savolainen K, Alenius H, Norppa H et al (2010) Risk assessment of engineered nanomaterials and nanotechnologies—a review. Toxicology 269:92–104. doi:10.1016/j.tox.2010.01.013

    CAS  Google Scholar 

  • Schmidt J, Vogelsberger W (2006) Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J Phys Chem B 110:3955–3963. doi:10.1021/jp055361l

    CAS  Google Scholar 

  • Simonet BM, Valcárcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21. doi:10.1007/s00216-008-2484-z

    CAS  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JMF et al (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535. doi:10.1016/j.jhazmat.2014.10.004

    CAS  Google Scholar 

  • Solovitch N, Labille J, Rose J et al (2010) Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ Sci Technol 44:4897–4902. doi:10.1021/es1000819

    CAS  Google Scholar 

  • Song Y, Heien ML, Jimenez V et al (2004) Voltammetric detection of metal nanoparticles separated by liquid chromatography. Anal Chem 76:4911–4919. doi:10.1021/ac049223o

    CAS  Google Scholar 

  • Song Z, Hrbek J, Osgood R (2005) Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett 5:1327–1332. doi:10.1021/nl0505703

    CAS  Google Scholar 

  • Song U, Jun H, Waldman B et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    CAS  Google Scholar 

  • Stoeger T, Reinhard C, Takenaka S et al (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333. doi:10.1289/ehp.8266

    Google Scholar 

  • Stone V (2009) Engineered nanoparticles: review of health and environmental safety - Project Final Report, p 426. http://nmi.jrc.ec.europa.eu/project/ENRHES.htm. Accessed 7 Jan 2013

  • Suter GW (1993) Ecological risk assessment. Lewis Publishers, Boca Raton

    Google Scholar 

  • Technology Strategy Board (2009) Nanoscale technologies strategy. Technology Strategy Board September 2009 T09/061, p 47. http://www.nibec.ulster.ac.uk/uploads/documents/nanoscaletechnologiesstrategy.pdf

  • Teleki A, Wengeler R, Wengeler L et al (2007) Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 179:131–139. doi:10.1016/j.powtec.2007.05.016

    Google Scholar 

  • Thill A (1999) Agrégation des particules: structure, dynamique et simulation. Application au cas d’un écoulement stratifié: l’estuaire du Rhône.  Physics. Universite de droit, d’´economie et des sciences - Aix-Marseille III, 1999. French. HAL Id: tel-00109390. https://tel.archives-ouvertes.fr/tel-00109390

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563. doi:10.1016/j.jhazmat.2011.02.072

    CAS  Google Scholar 

  • Tiede K, Boxall A, Tear S et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821. doi:10.1080/02652030802007553

    CAS  Google Scholar 

  • Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12486–12495. doi:10.1021/es403079h

    CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S et al (2012) Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692. doi:10.1002/etc.1880

    CAS  Google Scholar 

  • Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive x-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37:786–791. doi:10.1021/es026053t

    CAS  Google Scholar 

  • Von Der Kammer F, Baborowski M, Friese K (2005) Field-flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids. Anal Chim Acta 552:166–174. doi:10.1016/j.aca.2005.07.049

    Google Scholar 

  • Von der Kammer F, Ottofuelling S, Hofmann T (2010) Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ Pollut 158:3472–3481. doi:10.1016/j.envpol.2010.05.007

    Google Scholar 

  • Von der Kammer F, Legros S, Larsen EH et al (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30:425–436. doi:10.1016/j.trac.2010.11.012

    Google Scholar 

  • Von der Kammer F, Ferguson PL, Holden PA et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49. doi:10.1002/etc.723

    Google Scholar 

  • Wagner T, Bundschuh T, Schick R, Köster R (2004) Detection of aquatic colloids in drinking water during its distribution via a water pipeline network. Water Sci Technol 50:27–37

    CAS  Google Scholar 

  • Wallis LK, Diamond SA, Ma H et al (2014) Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity. Sci Total Environ 499:356–362. doi:10.1016/j.scitotenv.2014.08.068

    CAS  Google Scholar 

  • Walther C, Büchner S, Filella M, Chanudet V (2006) Probing particle size distributions in natural surface waters from 15 nm to 2 μm by a combination of LIBD and single-particle counting. J Colloid Interface Sci 301:532–537. doi:10.1016/j.jcis.2006.05.039

    CAS  Google Scholar 

  • Wang C, Böttcher C, Bahnemann DW, Dohrmann JK (2004) In situ electron microscopy investigation of Fe (III)-doped TiO 2 nanoparticles in an aqueous environment. J Nanoparticle Res 6:119–122

    CAS  Google Scholar 

  • Wang J, Zhou G, Chen C et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185. doi:10.1016/j.toxlet.2006.12.001

    CAS  Google Scholar 

  • WHO/EURO Technical Committee for Monitoring and Evaluating MMMF (1985) The WHO/EURO man-made mineral fiber reference scheme. Scand J Work Environ Health 11(2):123–129

  • Xiong S, George S, Yu H et al (2013) Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol 87:1075–1086. doi:10.1007/s00204-012-0938-8

    CAS  Google Scholar 

  • Zanker H, Schierz A (2012) Engineered nanoparticles and their identification among natural nanoparticles annual review of. Anal Chem 5:107–132

    CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P et al (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212. doi:10.1016/j.watres.2007.11.036

    CAS  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46:7520–7526. doi:10.1021/es3004427

    CAS  Google Scholar 

  • Zhou D, Ji Z, Jiang X et al (2013) Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 8:e81239. doi:10.1371/journal.pone.0081239

    Google Scholar 

Download references

Acknowledgments

This work was supported by the French Environment and Energy Management Agency (ADEME), the Région Alsace, and the National Research Agency (ANR) project MESONNET.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetana Quaranta.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, V., Loyaux-Lawniczak, S. & Quaranta, G. Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environ Sci Pollut Res 22, 11175–11192 (2015). https://doi.org/10.1007/s11356-015-4661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4661-x

Keywords

Navigation