Skip to main content

Advertisement

Log in

Thermally based isotopic speciation of carbon in complex matrices: a tool for environmental investigation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Elemental and isotopic analyses of carbon in environmental matrices usually highlight multiple pools of different composition and 13C/12C (δ13C ‰) isotopic ratio. Interpretation necessarily needs the characterization of the diverse end-members that usually are constituted by inorganic and organic components. In this view, we developed a routine protocol based on coupling of elemental and isotopic analyses that is able to discriminate the inorganic (IC) and organic (OC) contributions to the total carbon (TC) content. The procedure is only based on thermal destabilization of the different carbon pools and has been successfully applied on different environmental matrices (rocks, soils, and biological samples) with a mean C elemental and isotopic recoveries of 99.5 % (SD = 1.3 %) and 0.2 ‰ (SD = 0.2 ‰), respectively. The thermally based speciation (TBS) leads us to define precise isotopic end-members, which are unaffected by any chemical treatment of the sample, to be used for accurate mass balance calculation that represents a powerful tool to quantify the distinct carbon pools. The paper critically evaluates the method explaining the potentials and the current limits of the proposed analytical protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alva-Valdivia LM, Perrin M, Rivas-Sanchez ML, Goguitchaichvili A, Lòpez-Loera H, Ferreira Lopes O, Bastos Bon T (2009) Rock magnetism and microscopy of the Jacupiranga alkaline-carbonatitic complex, southern Brazil. Earth Planets Space 61:161–171

    Article  Google Scholar 

  • Beazley MJ, Rickman RD, Ingram DK, Boutton TW, Russ J (2002) Natural abundances of carbon isotopes (14 C, 13 C) in lichens and calcium oxalate pruina: implications for archaeological and paleoenvironmental studies. Radiocarbon 44:675–683

    CAS  Google Scholar 

  • Bianchini G, Marrocchino M, Moretti A, Vaccaro C (2006) Chemical-mineralogical characterisation of historical bricks from Ferrara: an integrated bulk and micro analytical approach. Geol Soc London Spec Publ 257:127–139

    Article  CAS  Google Scholar 

  • Bianchini G, Natali C, Di Giuseppe D, Beccaluva L (2012) Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy): characterisation and biomonitoring. J Soils Sediment 12:1145–1153

    Article  CAS  Google Scholar 

  • Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon—an overview of current methods. Trends Anal Chem 23:10–11

    Article  Google Scholar 

  • Bisutti I, Hilke I, Schumacher J, Raessler M (2007) A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, in-organic and total carbon in soil samples. Talanta 71:521–528

    Article  CAS  Google Scholar 

  • Boyle J (2004) A comparison of two methods for estimating the organic matter content of sediments. J Paleolimnol 31:125–127

    Article  Google Scholar 

  • Bragazza L, Iacumin P (2009) Seasonal variation in carbon isotopic composition of bog plant litter during 3 years of field decomposition. Biol Fert Soils 46:73–77

    Article  CAS  Google Scholar 

  • Brochier J-E, Thinon M (2003) Calcite crystals, starch grains aggregates or POCC? Comment on ‘calcite crystals inside archaeological plant tissues’. J Archaeol Sci 30:1211–1214

    Article  Google Scholar 

  • Brodie CR, Leng MJ, Casford JSL, Kendrick CP, Lloyd JM, Yongqiang Z, Bird MI (2011) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83

    Article  CAS  Google Scholar 

  • Bunn SE, Loneragan NR, Kempster MA (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnol Oceanogr 40:622–625

    Article  CAS  Google Scholar 

  • Cachiers H, Bremond MP, Buat-Menard P (1989) Determination of atmospheric soot carbon with a simple thermal method. Tellus 41B:379–390

    Article  Google Scholar 

  • Cailleau G, Braissant O, Verrecchia EP (2011) Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8:1755–1767

    Article  CAS  Google Scholar 

  • Carmody L (2012) Geochemical characteristics of carbonatite-related volcanism and sub-volcanic metasomatism at Oldoinyo Lengai, Tanzania [PhD Dissertation]. University College of London, London

    Google Scholar 

  • Caughey ME, Barcelona MJ (1994) Improved quantitation of organic and inorganic carbon in soils and acquifer materials. Champaigne (Illinois – US): University of Illinois, Waste Management and Research Center

  • Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH (2009) Evaluation of different soil carbon determination methods. Crit Rev Plant Sci 28:164–178

    Article  CAS  Google Scholar 

  • Cortecci G, Dinelli E, Molli G, Ottria G (2003) Geochemical evidence for fluid-rock interaction along high angle faults in the Alpi Apuane, NW Tuscany, Italy. Period Mineral 72:35–47

    Google Scholar 

  • Craft CB, Seneca ED, Broome SW (1991) Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustion. Estuaries 14:175–179

    Article  CAS  Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 2002(58):247–278

    Article  Google Scholar 

  • Deniro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • Di Giuseppe D, Vittori Antisari L, Ferronato C, Bianchini G (2014) New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chem Erde-Geochem 74:615–623

    Article  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Glob Change Biol 12:1–16

    Article  Google Scholar 

  • Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  Google Scholar 

  • Freudenthal T, Wagner T, Wenzhofer F, Zabel M, Wefer G (2001) Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim Cosmochim Acta 65:1795–1808

    Article  CAS  Google Scholar 

  • Froelich PN (1980) Analysis of organic carbon in marine sediments. Limnol Oceanogr 25:564–572

    Article  CAS  Google Scholar 

  • Gatta T, Gregori E, Marini F, Tomassetti M, Visco G, Campanella L (2014) New approach to the differentiation of marble samples using thermal analysis and chemometrics in order to identify provenance. Chem Cent J 7:8–35

    Google Scholar 

  • Gelinas Y, Prentice KM, Baldock JA, Hedges JI (2001) An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environ Sci Technol 35:3519–3525

    Article  CAS  Google Scholar 

  • Gonfiantini R, Stichler W, Rozanski K, (1995) Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements, in Reference and Intercomparison Materials for Stable Isotopes of Light Elements, (Stichler W, Ed). IAEA, Vienna, 1993, p. 13-29

  • Harris D, Horwath WR, Van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon—13 analysis. Soil Sci Soc Am J 65:1853–1586

    Article  CAS  Google Scholar 

  • Hsieh YP, Bugna GC (2008) Analysis of black carbon in sediments and soils using multi-element scanning thermal analysis (MESTA). Org Geochem 39:1562–1571

    Article  CAS  Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660

    Article  CAS  Google Scholar 

  • Kloprogge TJ, Bostroem ET, Weiler LM (2004) In situ observation of the thermal decomposition of weddellite by heating stage environmental scanning electron microscopy. Am Mineral 89:245–248

    CAS  Google Scholar 

  • Koch PL, Tuross N, Fogel ML (1997) The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci 24:417–429

    Article  Google Scholar 

  • Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux J-P, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J Geophys Res 101:23651–23665

    Article  CAS  Google Scholar 

  • Kusaka S, Nakano T (2014) Carbon and oxygen isotope ratios and their temperature dependence in carbonate and tooth enamel using GasBench II preparation device. Rapid Commun Mass Sp 28:563–567

    Article  CAS  Google Scholar 

  • Leifeld J (2007) Thermal stability of black carbon characterized by oxidative differential scanning calorimetry. Org Geochem 38:112–127

    Article  CAS  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–831

    Article  Google Scholar 

  • Lopez-Capel E, Abbott GD, Thomas KM, Manning DAC (2006) Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition. J Anal Appl Pyrol 75:82–89

    Article  CAS  Google Scholar 

  • Manning DAC, Lopez-Capel E, Barker S (2005) Seeing soil carbon: use of thermal analysis in the characterization of soil C reservoirs of differing stability. Min Mag 69:425–435

    Article  CAS  Google Scholar 

  • Manning DAC, Lopez-Capel E, White ML, Barker S (2008) Carbon isotope determination for separate components of heterogeneous materials using coupled thermogravimetric analysis/isotope ratio mass spectrometry. Rapid Commun Mass Sp 22:1187–1195

    Article  CAS  Google Scholar 

  • Maschowski C, Gieré R, Trouvé G (2012) Characterization of combustion products from biomass pellets. Min Mag 76:2077

    Google Scholar 

  • Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301

    CAS  Google Scholar 

  • Meyer KM, Yu M, Lehrmann D, van de Schootbrugge B, Payne JL (2013) Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth Planet Sci Lett 361:429–435

    Article  CAS  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  CAS  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  CAS  Google Scholar 

  • Morgun EG, Kovda IV, Ryskov YG, Oleinik SA (2008) Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies. Eurasian Soil Sci 41:265–275

    Article  Google Scholar 

  • Natali C, Bianchini G (2014) Understanding the carbon isotopic signature in complex environmental matrices. Int J Environ Qual 14:19–30

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, editor. Methods of soil analysis part 3—chemical methods. (No. 5) WI: Madison; 1996. pp. 961–1010. (Soil science society of America book series – American society of agronomy)

  • Nordt LC, Hallmark CT, Wilding LP, Boutton TW (1998) Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 82:115–136

    Article  Google Scholar 

  • Ostrowska A, Porebska G (2012) Assessment of TOC-SOM and SOM-TOC conversion in forest soil. Pol J Environ Stud 21:1767–1775

    CAS  Google Scholar 

  • Pallasser R, Minasny B, Mcbratney AB (2013) Soil carbon determination by thermogravimetrics. Peer J 1, e6

    Article  Google Scholar 

  • Peacock, T.R. 1992. The preparation of plant material and determination of weight percent ash. U.S. Geological Survey Open File Report 92—345. 9 pp.

  • Phillips SC, Johnson JE, Miranda E, Disenhof C (2011) Limnol Oceanogr Methods 9:194–203

    Article  CAS  Google Scholar 

  • Pinnegar JK, Polunin NVC (1999) Differential fractionation of delta δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231

    Article  Google Scholar 

  • Rabenhorst MC (1988) Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci Soc Am J 52:965–969

    Article  CAS  Google Scholar 

  • Regev L, Eckmeier E, Mintz E, Weiner S, Boaretto E (2011) Radiocarbon concentrations of wood ash calcite: potential for dating. Radiocarbon 53:117–127

    CAS  Google Scholar 

  • Santos RV, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochim Cosmochim Ac 59:1339–1352

    Article  CAS  Google Scholar 

  • Schlacher TA, Connolly RM (2014) Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis. Methods Ecol Evol 5:541–550

    Article  Google Scholar 

  • Schrumpf M, Kaiser K, Schulze ED (2014) Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany. PLoS One 9, e89364

    Article  Google Scholar 

  • Serrano O, Serrano L, Mateo MA, Colombini I, Chelazzi L, Gagnarli E, Fallaci M (2008) Acid washing effect on elemental and isotopic composition of whole beach arthropods: implications for food web studies using stable isotopes. Acta Oecol 34:89–96

    Article  Google Scholar 

  • Shahack-Gross R (2011) Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. J Archaeol Sci 38:205–218

    Article  Google Scholar 

  • Sharp Z (2007) Principles of isotope geochemistry. Prentice Hall, USA, 360 p

    Google Scholar 

  • Sisson VB, Hollister LS (1990) A fluid-inclusion study of metamorphosed politic and carbonate rocks, south-central Maine. Am Mineral 75:59–70

    CAS  Google Scholar 

  • Soon YK, Abboud SA (1991) Comparison of some methods for soil organic carbon determination. Commun Soil Sci Plant 22:943–954

    Article  CAS  Google Scholar 

  • Sreenivas B, Das Sharma S, Kumar B, Patil DJ, Roy AB, Srinivasan R (2001) Positive δ13C excursion in carbonate and organic fractions from the Paleoproterozoic Aravalli Supergroup, Northwestern India. Precambrian Res 106:277–290

    Article  CAS  Google Scholar 

  • Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep-Sea Res Pt I 37:157–165

    Article  CAS  Google Scholar 

  • Vuong TX, Heitkamp F, Jungkunst HF, Reimer A, Gerold G (2013) Simultaneous measurement of soil organic and inorganic carbon: evaluation of a thermal gradient analysis. J Soil Sediment 13:1133–1140

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  • Winn J, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131:89–109

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the following colleagues for providing samples and reference materials: Dr. R. Marchesini, University of Ferrara (plant samples), Dr. P. Gioacchini, University of Bologna (manure and litter samples), and Dr. I. Baneschi, IGG-CNR of Pisa (Carrara Marble). The authors thanks Dr. M. Verde for XRPD analyses and the three anonymous referees and the editor for their constructive comments that helped to improve earlier versions of the manuscript. The study was funded in part by the European Fund of Regional Development (POR FESR 2007-2013), Terra&AcquaTech Labs., Technopole of Ferrara.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Bianchini.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natali, C., Bianchini, G. Thermally based isotopic speciation of carbon in complex matrices: a tool for environmental investigation. Environ Sci Pollut Res 22, 12162–12173 (2015). https://doi.org/10.1007/s11356-015-4503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4503-x

Keywords

Navigation