Skip to main content

Advertisement

Log in

Thermodynamic analysis of fatty acid harvesting by novel carbon-based adsorbent

  • Biological waste as resource, with a focus on food waste
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, separation and concentration of fatty acids (FA) from the synthetic food processing wastewater containing low concentration of FA (250 mg/L) were investigated using expanded graphite (EG) as a novel adsorbent at different temperatures (298~318 K). The adsorption results were further analyzed to verify adsorption mechanisms and thermodynamics of FA onto EG. Results show that the adsorption of FA onto EG was explained well by the Langmuir model with the maximum adsorption capacity up to 8.01 g FA/g EG at 298 K, and considerably affected by temperature. The adsorption kinetics fitted with pseudo-second-order kinetic model and the adsorption mechanism analysis showed that the intraparticle diffusion was not the rate-limiting step, but the coalescence of FA droplets played the significant role for novel adsorption of FA onto EG. The calculated activation energy and thermodynamic parameters such as Gibbs free energy change (ΔG0), enthalpy change (ΔH0), and entropy change (ΔS0) indicated that the adsorption of FA onto EG was very feasible, was highly spontaneous, occurred physically, was exothermic in nature, and was stable in aquatic environmental changes. Overall, FA can be effectively harvested and concentrated from the food processing wastewater by EG even at low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Kumar R (2010) Adsorption studies of hazardous malachite green onto treated ginger waste. J Environ Manag 91:1032–1038. doi:10.1016/j.jenvman.2009.12.016

    Article  CAS  Google Scholar 

  • Araujo GS, Matos LJBL, Goncalves LRB, Fernandes FAN, Farias WRL (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102:5248–5250

    Article  CAS  Google Scholar 

  • Biggar JW, Cheung MW (1973) Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, Ephrata, and Palouse soils—thermodynamic approach to adsorption mechanism. Soil Sci Soc Am J 37:863–868

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. doi:10.1016/j.jhazmat.2010.11.029

    Article  CAS  Google Scholar 

  • Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil—with what and for what? Eur J Lipid Sci Technol 113:812–831. doi:10.1002/ejlt.201100032

    Article  CAS  Google Scholar 

  • Eissen M, Metzger JO, Schmidt E, Schneidewind U (2002) 10 Years after Rio—concepts on the contribution of chemistry to a sustainable development. Angew Chem Int Ed 41:414–436. doi:10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N

    Article  CAS  Google Scholar 

  • Fredrick E, Walstra P, Dewettinck K (2010) Factors governing partial coalescence in oil-in-water emulsions. Adv Colloid Interf Sci 153:30–42. doi:10.1016/j.cis.2009.10.003

    Article  CAS  Google Scholar 

  • Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:1–9. doi:10.1186/1754-6834-5-17

    Article  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  • Haghi AK, Thomas S, MirMahaleh MM (2015) Foundation of nanotechnology: pore size in carbon-based nano-adsorbents (Volume 1). Apple Academic Press, Inc., Canada

    Google Scholar 

  • Hameed BH, El-Khaiary MI (2008) Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J Hazard Mater 153:701–708

    Article  CAS  Google Scholar 

  • Jonker GH, Veldsink JW, Beenackers AACM (1998) Intraparticle diffusion limitations in the hydrogenation of monounsaturated edible oils and their fatty acid methyl esters. Ind Eng Chem Res 37:4646–4656. doi:10.1021/ie970623u

    Article  CAS  Google Scholar 

  • Kirrolia A, Bishnoi NR, Singh R (2013) Microalgae as a boon for sustainable energy production and its future research & development aspects. Renew Sustain Energy Rev 20:642–656. doi:10.1016/j.rser.2012.12.003

    Article  CAS  Google Scholar 

  • Kumar A, Rout S, Ghosh M, Singhal R, Ravi P (2013) Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems. Springer Plus 2:1–7. doi:10.1186/2193-1801-2-530

    Article  Google Scholar 

  • Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667. doi:10.1016/j.tibtech.2012.09.006

    Article  CAS  Google Scholar 

  • McKay G, Ho YS, Ng JCY (1999) Biosorption of copper from waste waters: a review. Sep Purif Methods 28:87–125

    Article  CAS  Google Scholar 

  • Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802. doi:10.1039/B703294C

    Article  CAS  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  Google Scholar 

  • Ozcan A, Omeroglu C, Erdogan Y, Ozcan AS (2007) Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. J Hazard Mater 140:173–179

    Article  Google Scholar 

  • Pang XY (2010) Adsorption capacity and mechanism of expanded graphite for polyethylene glycol and oils. J Chem doi:10.1155/2010/565468

  • Pleissner D, Lau KY, Schneider R, Venus J, Lin CSK (2014) Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res Int doi:http://dx.doi.org/10.1016/j.foodres.2014.11.048

  • Stang M, Karbstein H, Schubert H (1994) Adsorption kinetics of emulsifiers at oil—water interfaces and their effect on mechanical emulsification. Chem Eng Process Process Intensif 33:307–311, 10.1016/0255-2701(94)02000-0

    Article  CAS  Google Scholar 

  • Savos’kin MV, Yaroshenko AP, Mochalin VN, Panchenko BV (2003) Sorption of industrial oil by expanded graphite. Russ J Appl Chem 76:906–908. doi:10.1023/A:1026315707819

    Article  Google Scholar 

  • Shirvani M, Kalbasi M, Shariatmadari H, Nourbakhsh F, Najafi B (2006) Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis. Chemosphere 65:2178–2184. doi:10.1016/j.chemosphere.2006.06.002

    Article  CAS  Google Scholar 

  • Sun Q, Yang L (2003) The adsorption of basic dyes from aqueous solution on modified peat–resin particle. Water Res 37:1535–1544. doi:10.1016/S0043-1354(02)00520-1

    Article  CAS  Google Scholar 

  • Taty-Costodes VC, Fauduet H, Porte C, Delacroix A (2003) Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105:121–142. doi:10.1016/j.jhazmat.2003.07.009

    Article  CAS  Google Scholar 

  • Tcholakova S, Denkov ND, Ivanov IB, Campbell B (2006) Coalescence stability of emulsions containing globular milk proteins. Adv Colloid Interf Sci 123–126:259–293. doi:10.1016/j.cis.2006.05.021

    Article  Google Scholar 

  • Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 18

  • Toyoda M, Inagaki M (2000) Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38:199–210, 1016/S0008-6223(99)00174-8

    Article  CAS  Google Scholar 

  • Tryba B, Morawski AW, Kaleńczuk RJ, Inagaki M (2003) Exfoliated graphite as a new sorbent for removal of engine oils from wastewater spill. Sci Technol Bull 8:569–571. doi:10.1016/S1353-2561(03)00070-7

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395, 10.1016/j.jhazmat.2006.10.046

    Article  CAS  Google Scholar 

  • Wang G, Sun Q, Zhang Y, Fan J, Ma L (2010) Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263:183–188

    Article  CAS  Google Scholar 

  • Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AICHE J 20:228–238. doi:10.1002/aic.690200204

    Article  CAS  Google Scholar 

  • Wu F-C, Tseng R-L, Juang R-S (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    Article  CAS  Google Scholar 

  • Yang C-h (1998) Statistical mechanical study on the Freundlich isotherm equation. J Colloid Interface Sci 208:379-–387

    Article  CAS  Google Scholar 

  • Yousef RI, El-Eswed B, Al-Muhtaseb AH (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem Eng J 171:1143–1149. doi:10.1016/j.cej.2011.05.012

    Article  CAS  Google Scholar 

  • Zheng Y-P, Wang H-N, Kang F-Y, Wang L-N, Inagaki M (2004) Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles. Carbon 42:2603–2607. doi:10.1016/j.carbon.2004.05.041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Young Faculty Research Program from Kyung Hee University (KHU-20110469). The authors declare that they have no conflict of interest. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoktae Kang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, Q.C., Kang, S. Thermodynamic analysis of fatty acid harvesting by novel carbon-based adsorbent. Environ Sci Pollut Res 23, 7146–7154 (2016). https://doi.org/10.1007/s11356-015-4428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4428-4

Keywords

Navigation