Skip to main content
Log in

Analysis of a population of magnetotactic bacteria of the Gulf of Gabès, Tunisia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The occurrence of magnetotactic bacteria (MTB) on a Tunisian marine coast exposed to heavy metals pollution (Sfax, Gulf of Gabès, Mediterranean Sea) was investigated. The MTB population of this Southern Mediterranean coast was compared to the MTB populations previously investigated on the French Northern Mediterranean coast. A dominant MTB coccus morphotype was observed by microscopy analysis. By pyrosequencing technology, the analysis of the 16S ribosomal RNA (rDNA) revealed as much as 33 operational taxonomic sequence units (OTUs) close to sequences of MTB accessible in the databases. The majority were close to MTB sequences of the “Med group” of α-Proteobacteria. Among them, a dominant OTU_001 (99 % of the MTB sequences) affiliated within the Magnetococcales order was highlighted. Investigating the capacities of this novel bacterium to be used in bioremediation and/or depollution processes could be envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bahaj AS, James PAB, Ellwood DC, Watson JHP (1993) Characterization and growth of magnetotactic bacteria: implications of clean-up of environmental pollution. J Appl Phys 73(10 IIA):5394

    Article  CAS  Google Scholar 

  • Bahaj AS, James P, Croudace I (1994) Metal uptake and separation using magnetotactic bacteria. IEEE Trans Magn 30(6):4707

    Article  CAS  Google Scholar 

  • Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE (1998) Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater 184(2):241–244

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Microbiol Meth J 4:33–36

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  • Dowd SE, Sun Y et al (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    Article  CAS  Google Scholar 

  • Flies CB, Peplies J, Schüler D (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731

    Article  CAS  Google Scholar 

  • Fuduche M, Postec A, Davidson S, Chauvin JP, Galès G, Hirschler-Réa A, Ollivier B, W LF, N Pradel (2015) Diversity of magnetotactic bacteria from a French pristine Mediterranean area. Curr Microbiol 70:499–505

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck AJ, De Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schüler D (2010) Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricumvia ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 12:2466–2478

    Article  CAS  Google Scholar 

  • Jogler C, Wanner G, Kolinko S, Niebler M, Amann R, Petersen N, Kube M, Reinhardt R, Schüler D (2011) Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc Natl Acad Sci U S A 108:1134–1139

    Article  CAS  Google Scholar 

  • Keim CN, Solórzano G, Farina M, Lins U (2005) Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol 8:111–117

    CAS  Google Scholar 

  • Keim CN, Lins U, Farina M (2009) Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiol Lett 292:250–253

    Article  CAS  Google Scholar 

  • Kolinko S, Wanner G, Katzmann E, Kiemer F, Fuchs BM, Schüler D (2012) Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ Microbiol 15:1290–1301

    Article  Google Scholar 

  • Ladhar-Chaabouni R, Machreki-Ajmi M, Hamza-Chaffai A (2012) Use of metallothioneins as biomarkers for environmental quality assessment in the Gulf of Gabès (Tunisia). Environ Monit Assess 184:2177–2192

    Article  CAS  Google Scholar 

  • Lefèvre CT, Bernadac A, Pradel N, Wu LF, Yu-Zhang K, Xiao T, Yonnet JP, Lebouc A, Song T, Fukumori Y (2007) Characterization of Mediterranean magnetotactic bacteria. Ocean Univ China J 6:355–359

    Article  Google Scholar 

  • Lin W, Bazylinski DA, Xiao T, Wu LF, Pan Y (2014) Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol 16:2646–2658

    Article  CAS  Google Scholar 

  • Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc 251:231–236

    Article  Google Scholar 

  • Mezghani-Chaari S, Hamza A, Hamza-Chaffai A (2011) Mercury contamination in human hair and some marine species from Sfax coasts of Tunisia: levels and risk assessment. Environ Monit Assess 180:477–487

    Article  CAS  Google Scholar 

  • Moisescu C, Ardelean II, Benning LG (2014) The effect and role of environmental conditions on magnetosomes synthesis. Front Microbiol 5:49

    Article  Google Scholar 

  • Postec A, Tapia N, Bernadac A, Joseph M, Davidson S, Wu LF, Ollivier B, Pradel N (2012) Distribution of magnetotactic bacteria in microcosms from the French Mediterranean cost subjected to oil-industrial activities. Microb Ecol 63:1–11

    Article  Google Scholar 

  • Rekik A, Denis M, Dugenne M, Barani A, Maalej S, Ayadi H (2014) Seasonal distribution of ultraphytoplankton and heterotrophic prokaryotes in relation to abiotic variables on the north coast of Sfax after restoration. Mar Pollut Bull 84:280–305

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    Article  CAS  Google Scholar 

  • Song HP, Li XG, Sun JS, Xu SM, Han X (2008) Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72:616–621

    Article  CAS  Google Scholar 

  • Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol 3:158–162

    Article  CAS  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    Google Scholar 

  • Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, tactic behaviour and potential for sulphate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 11:1493–1505

    Article  Google Scholar 

  • Wolfe RS, Thauer RK, Pfennig N (1987) A “capillary racetrack” method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 45:31–35

    Article  Google Scholar 

  • Yan L, Zhang S, Chen P, Liu H, Yin H, Liu H (2012) Magnetotactic bacteria, magnetosomes and their application. Microb Res 167:507–519

    Article  CAS  Google Scholar 

  • Zaghden H, Kallel M, Louati A, Elleuch B, Oudot J, Saliot A (2005) Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Mar Pollut Bull 50:1287–1294

    Article  CAS  Google Scholar 

  • Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H (2012) Magnetotactic bacteria: promising biosorbents for heavy metals. Appl Microbiol Biotechnol 95:1097–1104

    Article  CAS  Google Scholar 

  • Zhou K, Zhang WY, Pan HM, Li JH, Yue HD, Xiao T, Wu LF (2013) Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone. Environ Microbiol 15:1595–1605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants of Actions au Sud-MIO 2013 and of the INCOMMET (Improving National Capacities in Observation and Management of Marine Environment in Tunisia) program FP7-INCO-2011-6, ERA-WIDE are acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Pradel.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 443 kb)

Figure S2

(DOC 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradel, N., Cayol, JL., Fardeau, ML. et al. Analysis of a population of magnetotactic bacteria of the Gulf of Gabès, Tunisia. Environ Sci Pollut Res 23, 4046–4053 (2016). https://doi.org/10.1007/s11356-015-4314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4314-0

Keywords

Navigation