Skip to main content

Advertisement

Log in

Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study

  • Microbial Ecology of the Continental and Coastal Environments
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water quality is a public health concern that calls for relevant biomonitoring programs. Molecular tools such as polymerase chain reaction (PCR) are progressively becoming more sensitive and more specific than conventional techniques to detect pathogens in environmental samples such as water and organisms. The zebra mussel (Dreissena polymorpha) has already been demonstrated to accumulate and concentrate various human waterborne pathogens. In this study, first, a spiking experiment to evaluate detection levels of Toxoplasma gondii DNA in zebra mussel organs using real-time PCR was conducted. Overall, lower DNA levels in the hemolymph, digestive gland, and remaining tissues (gonad and foot) were detected compared to mantle, muscle, and gills. Second, an in vivo experiment with 1000 T. gondii oocysts per mussel and per day for 21 consecutive days, followed by 14 days of depuration time in protozoa-free water was performed. T. gondii DNA was detected in all organs, but greatest concentrations were observed in hemolymph and mantle tissues compared to the others organs at the end of the depuration period. These results suggest that (i) the zebra mussel is a potential new tool for measuring T. gondii concentrations and (ii) real-time PCR is a suitable method for pathogen detection in complex matrices such as tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Aksoy U, Marangi M, Papini R, Ozkoc S, Bayram Delibas S, Giangaspero A (2014) Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by real time PCR/high-resolution melting analysis (HRM). Food Microbiol 44:128–135

    Article  CAS  Google Scholar 

  • Allam B, Paillard C (1998) Defense factors in clam extrapallial fluids. Dis Aquat Org 33:123–128

    Article  Google Scholar 

  • Allam B, Carden WE, Ward JE, Ralph G, Winnicki S, Pales Espinosa E (2013) Early host-pathogen interactions in marine bivalves: evidence that the alveolate parasite Perkinsus marinus infects through the oyster mantle during rejection of pseudofeces. J Invertebr Pathol 113:26–34

    Article  Google Scholar 

  • Arkush KD, Miller MA, Leutenegger CM, Gardner IA, Packham AE, Heckeroth AR, Tenter AM, Barr BC, Conrad PA (2008) Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). Int J Parasitol 33:1087–1097

    Article  Google Scholar 

  • Aubert D, Villena I (2009) Detection of Toxoplasma gondii oocysts in water: proposition of a strategy and evaluation in Champagne-Ardenne Region, France. Mem Inst Oswaldo Cruz 104:290–295

    Article  CAS  Google Scholar 

  • Bar T, Kubista M, Tichopad A (2012) Validation of kinetics similarity in qPCR. Nucleic Acids Res 40:1395–1406

    Article  CAS  Google Scholar 

  • Botes M, de Kwaadsteniet M, Cloete TE (2013) Application of quantitative PCR for the detection of microorganisms in water. Anal Bioanal Chem 405:91–108

    Article  CAS  Google Scholar 

  • Bourgeault A, Gourlay-Francé C, Vincent-Hubert F, Palais F, Geffard A, Biagianti-Risbourg S et al (2010) Lessons from a transplantation of zebra mussels into a small urban river: an integrated ecotoxicological assessment. Environ Toxicol 25:468–478

    Article  CAS  Google Scholar 

  • Cheng TC (1981) Bivalves. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol 1. Academic, New York, pp 233–300

    Google Scholar 

  • Dubey JP (2004) Toxoplasmosis—a waterborne zoonosis. Vet Parasitol 126:57–72

    Article  CAS  Google Scholar 

  • Dumètre A, Aubert D, Puech P-H, Hohweyer J, Azas N, Villena I (2012) Interaction forces drive the environmental transmission of pathogenic protozoa. Appl Environ Microbiol 78:905–912

    Article  Google Scholar 

  • Esmerini PO, Gennari SM, Pena HF (2010) Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Vet Parasitol 170:8–13

    Article  Google Scholar 

  • Gallas-Lindemann C, Sotiriadou I, Plutzer J, Karanis P (2013) Prevalence and distribution of Cryptosporidium and Giardia in wastewater and the surface, drinking and ground waters in the Lower Rhine, Germany. Epidemiol Infect 141:9–21

    Article  CAS  Google Scholar 

  • Graczyk TK (2008) Assessment of waterborne parasites in Irish river basin districts—use of zebra mussels (Dreissena polymorpha) as bioindicators. Aquat Invasions 3:305–313

    Article  Google Scholar 

  • Graczyk TK, Fayer R, Cranfield MR, Conn DB (1997) In vitro interactions of Asian freshwater clam (Corbicula fluminea) hemocytes and Cryptosporidium parvum oocysts. Appl Environ Microbiol 63:2910–2912

    CAS  Google Scholar 

  • Graczyk TK, Conn DB, Marcogliese DJ, Graczyk H, de Lafontaine Y (2003) Accumulation of human waterborne parasites by zebra mussels (Dreissena polymorpha) and Asian freshwater clams (Corbicula fluminea). Parasitol Res 89:107–112

    Article  CAS  Google Scholar 

  • Green HC, Field KG (2012) Sensitive detection of sample interference in environmental qPCR. Water Res 46:3251–3260

    Article  CAS  Google Scholar 

  • Hohweyer J, Dumètre A, Aubert A, Azas N, Villena I (2013) Tools and methods for detecting and characterizing Giardia, Cryptosporidium and Toxoplasma parasites in marine mollusks. J Food Prot 76:1649–1657

    Article  Google Scholar 

  • Jiang J, Alderisio KA, Singh A, Xiao L (2005) Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol 71:1135–1141

    Article  CAS  Google Scholar 

  • Jones JL, Dubey JP (2010) Waterborne toxoplasmosis—recent developments. Exp Parasitol 124:10–25

    Article  CAS  Google Scholar 

  • Lindsay DS, Phelps KK, Smith SA, Flick G, Sumner S, Dubey JP (2001) Removal of Toxoplasma gondii oocysts from sea water by eastern oysters (Crassostrea virginica). J Eukaryot Microbiol Suppl 48:197S-198S

  • Loge FJ, Thompson DE, Call DR (2002) PCR detection of specific pathogens in water: a risk-based analysis. Environ Sci Technol 36:2754–2759

    Article  CAS  Google Scholar 

  • Lucy FE, Graczyk TK, Tamang L, Miraflor A, Minchin D (2008) Biomonitoring of surface and coastal water for Cryptosporidium, Giardia, and human-virulent microsporidia using molluscan shellfish. Parasitol Res 103:1369–1375

    Article  Google Scholar 

  • Miller MA, Miller WA, Conrad PA, James ER, Melli AC, Leutenegger CM, Dabritz HA, Packham AE, Paradies D, Harris M, Ames J, Jessup DA, Worcester K, Grigg ME (2008) Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int J Parasitol 38:1319–1328

    Article  CAS  Google Scholar 

  • Palos Ladeiro M, Bigot A, Aubert D, Hohweyer J, Favennec L, Villena I, Geffard A (2013) Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring. Environ Sci Pollut Res 20:778–789

    Article  CAS  Google Scholar 

  • Palos Ladeiro M, Aubert D, Villena I, Geffard A, Bigot A (2014) Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring. Water Res 48:148–155

    Article  CAS  Google Scholar 

  • Reischl U, Bretagne S, Krüger D, Ernault P, Costa JM (2003) Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis 3:1–9

    Article  Google Scholar 

  • Roslev P, Bukh AS, Iversen L, Sønderbo H, Iversen N (2010) Application of mussels as biosamplers for characterization of faecal pollution in coastal recreational waters. Wat Sci Tech 62:586–593

    Article  CAS  Google Scholar 

  • Shapiro K, Largier J, Mazet JAK, Bernt W, Ell JR, Melli AC, Conrad PA (2009) Surface properties of Toxoplasma gondii oocysts and surrogate microspheres. Appli Environ Microbiol 75:1185–1191

    Article  CAS  Google Scholar 

  • Shapiro K, Mazet JAK, Schriewer A, Wuertz S, Fritz H, Miller WA, Largier J, Conrad PA (2010) Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res 44:893–903

    Article  CAS  Google Scholar 

  • Sidhu JPS, Hodgers L, Ahmed W, Chong MN, Toze S (2012) Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Res 46:6652–6660

    Article  CAS  Google Scholar 

  • Skotarczark B (2010) Progress in the molecular methods for the detection and genetic characterization of Cryptosporidium in water samples. Ann Agric Environ Med 17:1–8

    Google Scholar 

  • Sotiriadou I, Karanis P (2008) Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagn Microbiol Infect Dis 62:357–365

    Article  CAS  Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258

    Article  CAS  Google Scholar 

  • Villalba A, Reece KS, Camino Ordás M, Casas SM, Figueras A (2004) Perkinsosis in molluscs: a review. Aquat Living Resour 17:411–432

    Article  Google Scholar 

  • Villena I, Aubert D, Gomis P, Ferté H, Inglard J, Denis-bisiaux H, Dondon J, Pisano E, Ortis N, Pinon J (2004) Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl Environ Microbiol 70:4035–4039

    Article  CAS  Google Scholar 

  • Willis JE, McClure JT, Davidson J, McClure C, Greenwood SJ (2013) Global occurrence of Cryptosporidium and Giardia in shellfish: should Canada take a closer look? Food Res Int 52:119–135

    Article  Google Scholar 

  • Yang S, Rothman RE (2004) Review PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet 4:337–348

    Article  CAS  Google Scholar 

  • Zhang M, Yang Z, Wang S, Tao L, Xu LX, Yan RF, Song XK, Li XR (2014) Detection of Toxoplasma gondii in shellfish and fish in parts of China. Vet Parasitol 200:85–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This Ph.D. work was supported by grants from the “Région Champagne-Ardenne” (projet INTERBIO). Financial support was provided by the CNRS-INSU (Programme EC2CO, projet IPAD) and the Programme Interdisciplinaire de Recherche sur l’Environnement de la Seine (PIREN-Seine). The authors thank Stéphanie La Carbona and Catherine Cazeaux, ACTALIA, Villers Bocage, France, for optimizing the real-time quantitative PCR procedure. We are grateful to Annie Buchwalter for the English revision.

Ethical considerations

In France, experiments conducted with Dreissena polymorpha do not require authorization. This specie is not protected and their use in scientific research does not require a specific permit. However, every effort will be made to reduce the suffering of animals.

Conflict of interest

The authors declare no competing conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bigot-Clivot.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palos Ladeiro, M., Bigot-Clivot, A., Aubert, D. et al. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. Environ Sci Pollut Res 22, 13693–13701 (2015). https://doi.org/10.1007/s11356-015-4296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4296-y

Keywords

Navigation