Skip to main content
Log in

Optimization of growth conditions for laboratory and field assessments using immobilized benthic diatoms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The availability of rapid and effective methodologies for assessing lotic systems with microphytobenthos is still quite scarce. Hence, the primary goal of this study was to optimize the growth conditions of the sensitive and ubiquous benthic diatom Navicula libonensis for laboratorial and field assessments. The effect of different conditions of temperature, photoperiod, initial cell density, test duration and cell encapsulation into calcium alginate beads was evaluated in a first set of experiments. There was a slight increase in the growth of free and immobilized cells at 23 °C, at lower initial cell densities and at the shortest experimental period (6 days). Through all the conditions, the growth profiles of free versus immobilized were fairly variable. A second experimental trial involved the validation of selected conditions, applied to the ecotoxicological testing of N. libonensis to two reference chemicals—3,5-dichlorophenol and potassium dichromate. A similar response of free and immobilized cells was observed between exposures to spiked stream water and synthetic medium, and through the conditions tested. This outcome suggests that N. libonensis may potentially provide reliable responses under direct in situ exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • 2000/60/EC (2000): Water Framework Directive of the European Parliament and the Council, of 23 October 2000, establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327, pp. 1–72

  • APHA (American Public Health Asssociation) (1995) Standard methods for the examination of water and wastewater, 19th edn. APHA, Washington DC

    Google Scholar 

  • Araújo CV, Blasco J, Moreno-Garrido I (2010) Microphytobenthos in ecotoxicology: a review of the use of marine benthic diatoms in bioassays. Environ Int 36:637–646

    Article  Google Scholar 

  • Awasthi M, Rai LC (2005) Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda. Ecotoxicol Environ Saf 61:268–272

    Article  CAS  Google Scholar 

  • Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  • Brabec K, Szoszkiewicz K (2006) Macrophytes and diatoms—major results and conclusions from the STAR project. Hydrobiologia 566:175–178

    Article  Google Scholar 

  • Cemagref (1982): Étude des mèthodes biologiques quantitatives d’appréciation de la qualit des eaux .Rapport Division Qualité des Eaux Lyon - Agence financière de Bassin Rhône - Méditerranée - Corse, Pierre-Bénite, 218 pp

  • Chu S (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media. J Ecol 30:284–325

    Article  CAS  Google Scholar 

  • de Oliveira NS 2007: Caracterização físico-química e ecológica (diatomáceas) das linhas de água de Aveiro. M.Sc. thesis, University of Aveiro. 345pp

  • Environment Canada. 2007. Guidance document on statistical methods for environmental toxicity tests. Report EPS 1/RM/46, 241 p

  • Faafeng BA, van Donk E, Källqvist ST (1994) In situ measurement of algal growth potential in aquatic ecosystems by immobilized algae. J Appl Phycol 6:301–308

    Article  Google Scholar 

  • Feio MJ, Almeida SFP, Craveiro SC, Calado AJ (2009) A comparison between biotic indices and predictive models in stream water quality assessment based on benthic diatom communities. Ecol Indic 9:497–507

    Article  CAS  Google Scholar 

  • Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  Google Scholar 

  • Hasle G (1978) The inverted-microscope method. In: Sournia A (ed) Phytoplankton manual. Monographs on oceanographic methodology. United Nations Educational, Scientific and Cultural Organzation (Unesco), Paris, pp 88–96

    Google Scholar 

  • Hassan GS, Espinosa MA, Isla FI (2006) Modern diatom assemblages in surface sediments from estuarine systems in the Southeastern Buenos Aires Province, Argentina. J Paleolimnol 35:39–53

    Article  Google Scholar 

  • Hoogenhout H, Amesz J (1965) Growth rates of photosynthetic microorganisms in laboratory cultures. Arch Microbiol 50:10–25

    Google Scholar 

  • INAG I. P. (2008): Tipologia de Rios em Portugal Continental no âmbito da implementação da Directiva Quadro da Água. I - Caracterização abiótica. Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

  • ISO8692 (1989) Water quality—fresh water algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum. International Organization for Standardization, Geneva

    Google Scholar 

  • Jang LK (1994) Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng 43:183–185

    Article  CAS  Google Scholar 

  • Jiménez-Pérez V, Sánchez-Castillo P, Romera O, Fernández-Moreno D, Pérez-Martínez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34:392–398

    Article  Google Scholar 

  • Khoyi ZA, Seyfabadi J, Ramezanpour Z (2009) Effects of light intensity and photoperiod on the growth rate, chlorophyll a and beta-carotene of freshwater green micro alga Chlorella vulgaris. Comp Biochem Physiol A Mol Integr Physiol 153A:S215–S215

    Article  Google Scholar 

  • Lam C, Harder T, Qian P-Y (2005) Growth conditions of benthic diatoms affect quality and quantity of extracellular polymeric larval settlement cues. Mar Ecol Prog Ser 294:109–116

    Article  Google Scholar 

  • Lewis RJ, Johnson LM, Hoagland KD (2002) Effects of cell density, temperature, and light intensity on growth and stalk production in the biofouling diatom Achnanthes longipes (Bacillariophyceae)1. J Phycol 38:1125–1131

    Article  Google Scholar 

  • Lorenzen C (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390

    Article  CAS  Google Scholar 

  • Marques CR, Pereira R, Gonçalves F (2011) Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels. Environ Monit Assess 180:521–536

    Article  Google Scholar 

  • Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem 17:1091–1098

    Article  CAS  Google Scholar 

  • Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzym Microb Technol 38:135–141

    Article  CAS  Google Scholar 

  • Moreira-Santos M, Moreno-Garrido I, Gonçalves F, Soares A, Ribeiro R (2002) An in situ bioassay for estuarine environments using the microalga Phaeodactylum tricornutum. Environ Toxicol Chem 21:567–574

    Article  Google Scholar 

  • Moreira-Santos M, Soares A, Ribeiro R (2004a) A phytoplankton growth assay for routine in situ environmental assessments. Environ Toxicol Chem 23:1549–1560

    Article  CAS  Google Scholar 

  • Moreira-Santos M, Soares A, Ribeiro R (2004b) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 59:164–173

    Article  CAS  Google Scholar 

  • Moreira-Santos M, da Silva E, Soares A, Ribeiro R (2005) In situ and laboratory microalgal assays in the tropics: a microcosm simulation of edge-of-field pesticide runoff. Bull Environ Contam Toxicol 74:48–55

    Article  CAS  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  • Moreno-Garrido I, Hampel M, Lubián L, Blasco J (2003) Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae). Ecotoxicol Environ Saf 54:290–295

    Article  CAS  Google Scholar 

  • Moreno-Garrido I, Campana O, Lubián L, Blasco J (2005) Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51:823–829

    Article  CAS  Google Scholar 

  • Moreno-Garrido I, Lubián L, Blasco J (2007) Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin). Environ Int 33:481–485

    Article  CAS  Google Scholar 

  • Newsted JL (2004) Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga. Ecotoxicol Environ Saf 59:237–243

    Article  CAS  Google Scholar 

  • Novais MHCG 2011: Benthic diatoms in Portuguese watercourses. Ph.D. thesis, University of Évora, 224 pp

  • OECD (2011) Guidelines for testing chemicals in freshwater and cyanobacteria. Organization for Co-operation and Development, Paris

    Google Scholar 

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AMM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18:455–463

    Article  CAS  Google Scholar 

  • Poulíčková A, Hašler P, Lysáková M, Spears B (2008) The ecology of freshwater epipelic algae: an update. Phycologia 47:437–450

    Article  Google Scholar 

  • Qian H, Li J, Pan X, Jiang H, Sun L, Fu Z (2010) Photoperiod and temperature influence cadmium’s effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicol Environ Saf 73:1202–1206

    Article  CAS  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. University Press, Cambridge

    Book  Google Scholar 

  • Rai L, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114

    Article  CAS  Google Scholar 

  • Rimet F, Gomà J, Cambra J, Bertuzzi E, Cantonati M, Cappelletti C, Ciutti F, Cordonier A, Coste M, Delmas F (2007) Benthic diatoms in western European streams with altitudes above 800 M: characterisation of the main assemblages and correspondence with ecoregions. Diatom Res 22:147–188

    Article  Google Scholar 

  • Seeligmann C, Maidana NI, Morales M (2008) Diatomeas (Bacillariophyceae) de humedales de altura de la Provincia de Jujuy-Argentina. Bol Soc Argent Bot 43:1–17

    Google Scholar 

  • SETAC (1993): Guidance document on sediment toxicity tests and bioassays for freshwater and marine environments. From the “workshop on Sediment Toxicity Assessment”, November, Renesse, The Netherlands

  • Silva M (2008) Evaluation and integrated monitoring of the water quality from the Cértima River. M.Sc. thesis, University of Aveiro, 119 pp

  • Sokal MA, Hall RI, Wolfe BB (2008) Relationships between hydrological and limnological conditions in lakes of the Slave River Delta (NWT, Canada) and quantification of their roles on sedimentary diatom assemblages. J Paleolimnol 39:533–550

    Article  Google Scholar 

  • Souffreau C, Vanormelingen P, Verleyen E, Sabbe K, Vyverman W (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia 49:309–324

    Article  Google Scholar 

  • Spaulding S, Lubinski D, Potapova M (2010) Diatoms of the United States. http://westerndiatoms.colorado.edu Accessed on 14 May, 2013.

  • Twist H, Edwards AC, Codd GA (1997) A novel in-situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophication in flowing surface waters. Water Res 31:2066–2072

    Article  CAS  Google Scholar 

  • USEPA (2002) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. U.S. Environmental Protection Agency EPA-821-R-02-013, Washington DC

    Google Scholar 

  • Vidal T, Pereira J, Abrantes N, Almeida SP, Soares AVM, Gonçalves F (2014) Toxicity testing with the benthic diatom Navicula libonensis (Schoeman 1970): procedure optimisation and assessment of the species sensitivity to reference chemicals. Bull Environ Contam Toxicol 1–7

  • Wilson SE, Cumming BF, Smol JP (1994) Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. J Paleolimnol 12:197–221

    Article  Google Scholar 

  • Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22

    Article  Google Scholar 

Download references

Acknowledgments

Tânia Vidal, Catarina Marques, Joana Luísa Pereira and Nelson Abrantes received individual research grants from the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/48046/2008, SFRH/BPD/47292/2008, SFRH/BPD/44733/2008 and SFRH/BPD/84833/2012, respectively). This study was funded by national funds through FCT, and by the European Regional Development Fund (ERDF) through the Competitiveness Factors Operational Programme (COMPETE), under the scope of the projects PTDC/AAC-AMB/112438/2009 and PEst-C/MAR/LA0017/2013.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Vidal.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 58.5 kb)

Table S2

(DOC 54 kb)

Table S3

(DOC 81 kb)

Table S4

(DOC 49.5 kb)

Table S5

(DOC 36 kb)

Table S6

(DOC 47 kb)

Table S7

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, T., Marques, C., Abrantes, N. et al. Optimization of growth conditions for laboratory and field assessments using immobilized benthic diatoms. Environ Sci Pollut Res 22, 5919–5930 (2015). https://doi.org/10.1007/s11356-014-3713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3713-y

Keywords

Navigation