Skip to main content
Log in

Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The Ecological Risk Assessment of pesticides requires data regarding their toxicity to aquatic and terrestrial non-target species. Such requirements concern active ingredient(s), generally not considering the noxious potential of commercial formulations. This work intends to contribute with novel information on the effects of short-term exposures to two herbicides, with different modes of action (Spasor®, Stam Novel Flo 480®), and an insecticide (Lannate®), as well as to corresponding active ingredients (Glyphosate, Propanil and Methomyl, respectively). The microalga Pseudokirchneriella subcapitata (growth inhibition), the cladoceran Daphnia magna (immobilisation), and the earthworm Eisenia andrei (avoidance behaviour) were used as test species. Both herbicides were innocuous to all test organisms at environmentally realistic concentrations, except for Stam and Propanil (highly toxic for Pseudokirchneriella; moderately toxic to Daphnia). Lannate and Methomyl were highly toxic to Daphnia and caused Eisenia to significantly avoid the spiked soil at realistic application rates. The toxicity of formulations either overestimated (e.g. Stam/Propanil for P. subcapitata) or underestimated (e.g. Stam/Propanil for D. magna) that of the active ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa Uranium Mine (central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390:387–395. doi:10.1016/j.scitotenv.2007.07.053

    Article  CAS  Google Scholar 

  • ASTM—American Society for Testing and Materials (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E 729–780

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989a) The Daphnia bioassay: a critique. Hydrobiologia 188(189):403–406

    Google Scholar 

  • Baird DJ, Soares AMVM, Girling A, Barber I, Bradley MC, Calow P (1989b) The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In: Lokke H, Tyle H, Bro-Rasmussen F (eds) Proceedings of the first European conference on ecotoxicology, Lyngby, p 144–148

  • Baylis AD (2000) Why gliphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308. doi:10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K

    Article  CAS  Google Scholar 

  • Bon D, Gilard V, Massou S, Pérès G, Malet-Martino M, Martino R, Desmoulin F (2006) In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unstarved Aporrectodea caliginosa (Lumbricidae). Biol Fertil Soils 43:191–198. doi:10.1007/s00374-006-0092-7

    Article  CAS  Google Scholar 

  • Capowiez Y, Rault M, Costagliola G, Mazzia C (2005) Lethal and Sub-lethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icterica). Biol Fertil Soils 41:135–143. doi:10.1007/s00374-004-0829-0

    Article  CAS  Google Scholar 

  • Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 61:1152–1160. doi:10.1002/ps.1117

    Article  CAS  Google Scholar 

  • Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and groundwaters. Water Res 37:1055–1063. doi:10.1016/S0043-1354(01)00462-6

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803–1806

    CAS  Google Scholar 

  • da Luz TN, Ribeiro R, Sousa JP (2004) Avoidance tests with Collembola and earthworms as early screening tools for site-specific assessment of polluted soils. Environ Toxicol Chem 23:2188–2193. doi:10.1897/03-445

    Article  CAS  Google Scholar 

  • EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC and 2000/21/EC. OJ L396/1, 30 December 2006

  • EC—European Commission (2002a) Guidance document on terrestrial ecotoxicology under Council Directive 91/414/EEC. SANCO/10329/2002 Rev 2

  • EC—European Commission (2002b) Guidance document on aquatic ecotoxicology. Under Council directive 91/414/EEC. SANCO/3268/2001 Rev 4

  • EC—European Commission, Health & Consumer protection Directorate-General (2002c) Review report for the active substance glyphosate—Commission Working Document

  • EEC (1991) Directive 91/414/EEC. Council Directive of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.08.1991

  • Ehler LE (2004) An evaluation of some natural enemies of Spodoptera exigua on sugarbeet in Northern California. Biocontrol 49:121–135. doi:10.1023/B:BICO.0000017364.20596.38

    Article  Google Scholar 

  • Elendt BP, Bias WR (1990) Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimisation of culture conditions on life-history parameters of D. magna. Water Res 24:1157–1167. doi:10.1016/0043-1354(90)90180-E

    Article  CAS  Google Scholar 

  • Fernández-Alba AR, Hernando D, Agüera A, Cáceres J, Malato S (2002) Toxicity assays: a way for evaluating AOPs efficiency. Water Res 36:4255–4262. doi:10.1016/S0043-1354(02)00165-3

    Article  Google Scholar 

  • Ferraz DGB, Sabater C, Carrasco JM (2004) Effects of propanil, tebufenozide and mefenacet on growth of four freshwater species of phytoplankton: a microplate bioassay. Chemosphere 56:315–320. doi:10.1016/j.chemosphere.2004.01.038

    Article  Google Scholar 

  • Fochtman P, Raszka A, Nierzedska E (2000) The use of conventional bioassays, microbiotests, and some “rapid” methods in the selection of an optimal test battery for the assessment of pesticides toxicity. Environ Toxicol 15:376–384. doi:10.1002/1522-7278(2000)15:5<376::AID-TOX4>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Frampton GK, Jänsch S, Scott-Fordsman JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489. doi:10.1897/05-438R.1

    Article  CAS  Google Scholar 

  • Gonçalves AMM, de Figueiredo DR, Pereira MJ (2005) A low-cost methodology for algal growth inhibition tests using three freshwater green algae. Fresen Environ Bull 14:1192–1195

    Google Scholar 

  • Herrmann KL, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503. doi:10.1146/annurev.arplant.50.1.473

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2005) Terrestrial ecotoxicity of eight chemicals in a systematic approach. J Soils Sediments 5:59–65. doi:10.1065/jss2004.10.123

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments—an alternative for acute and reproduction tests. J Soils Sediments 1:15–20. doi:10.1007/BF02986464

    Article  CAS  Google Scholar 

  • ISO—International Organization for Standardization (2005). Soil quality: avoidance test for testing the quality of soils and the toxicity of chemicals—test with earthworms (Eisenia fetida). Geneve

  • Jager T, Fleuren RHLJ, Hogendoorn EA, De Korte G (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37:3399–3404. doi:10.1021/es0340578

    Article  CAS  Google Scholar 

  • Jensen J, Mesman M (2006) Ecological risk assessment of contaminated land—decision support for site specific investigations. ISBN 90-6960-138-9/978-90-6960-138-0

  • Kegley S, Hill B, Orme S (2007) PAN pesticides database. Pesticide action Network, North America, San Francisco (http://www.pesticideinfo.org)

  • Krogh KA, Halling Sørensen B, MOrgensen BB, Vejrup KV (2003) Environmental properties and effects of non-ionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901. doi:10.1016/S0045-6535(02)00648-3

    Article  CAS  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15. doi:10.1016/j.ejsobi.2006.10.002

    Article  Google Scholar 

  • McMillan DC, McRae TA, Hinson JA (1990) Propanil-induced methemoglobinemia and haemoglobin binding in the rat. Toxicol Appl Pharmacol 105(3):503–507. doi:10.1016/0041-008X(90)90153-L

    Article  CAS  Google Scholar 

  • O’Halloran K (2007) Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Hum Ecol Risk Assess 12:74–83. doi:10.1080/10807030500428603

    Article  Google Scholar 

  • Oakes DJ, Pollak JK (2000) The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivates of 2, 4, 5-T and 2, 4-D using sub-mitochondrial particles. Toxicology 151:1–9. doi:10.1016/S0300-483X(00)00244-4

    Article  CAS  Google Scholar 

  • OECD—Organisation for Economic Cooperation and Development (2004) OECD guideline for testing of chemicals—Daphnia sp., acute immobilisation test

  • OECD—Organisation for Economic Cooperation and Development (2006) OECD guidelines for testing of chemicals—algal growth inhibition test, vol 201

  • Pereira T, Cerejeira MJ, Espírito-Santo J (2000) Use of microbiotests to compare the toxicity of water samples fortified with active ingredients and formulated pesticides. Environ Toxicol 15:401–405. doi:10.1002/1522-7278(2000)15:5<401::AID-TOX7>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Pereira JL, Mendes CD, Gonçalves F (2007) Short- and long-term responses of Daphnia spp. to Propanil exposures in distinct food-supply scenarios. Ecotoxicol Environ Saf 68:386–396. doi:10.1016/j.ecoenv.2006.10.012

    Article  CAS  Google Scholar 

  • Römbke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265. doi:10.1016/j.ecoenv.2005.03.027

    Article  Google Scholar 

  • Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology—evaluation of different test systems in soil toxicity assessment. J Soils Sediments 3:79–84. doi:10.1007/BF02991072

    Article  CAS  Google Scholar 

  • Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci 58:343–351. doi:10.1002/ps.462

    Article  Google Scholar 

  • Slimak KM (1997) Avoidance response as a sublethal effect of pesticides on Lumbricus terrestris (Oligochaeta). Soil Biol Biochem 29:713–715. doi:10.1016/S0038-0717(96)00027-2

    Article  CAS  Google Scholar 

  • Solomon KR, Thompson DG (2003) Ecological risk assessment for aquatic organisms from over-water uses of Glyphosate. J Toxicol Environ Health B 6:289–324. doi:10.1080/10937400306468

    Article  CAS  Google Scholar 

  • Tariq MI, Afzal S, Hussain I, Sultana N (2007) Pesticide exposure in Pakistan: a review. Environ Int 33:1107–1122. doi:10.1016/j.envint.2007.07.012

    Article  CAS  Google Scholar 

  • Tomlin C (2001) The pesticide manual. British Crop Protection Council, Surrey

    Google Scholar 

  • Tomlin AD, Gore FL (1974) Effects of six insecticides and a fungicide on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 12:487–492. doi:10.1007/BF01684987

    Article  CAS  Google Scholar 

  • USEPA—United States Environmental Protection Agency (2001). Memorandum: review of environmental fate and ecological effects for the re-registration eligibility decision for propanil

  • Villarroel MJ, Sancho S, Ferrando MD, Andreu E (2003) Acute, chronic and sub-lethal effects of the herbicide propanil on Daphnia magna. Chemosphere 53:857–864. doi:10.1016/S0045-6535(03)00546-0

    Article  CAS  Google Scholar 

  • Weeks JM, Comber DW (2005) Ecological risk assessment of contaminated soil. Mineral Mag 69:601–613. doi:10.1180/0026461056950274

    Article  CAS  Google Scholar 

  • WHO—World Health Organisation (1996). Methomyl—environmental health criteria 178. (http://www.inchem.org/documents/ehc/ehc/ehc178.htm)

  • Wilson PC, Foos JF (2006) Survey of carbamate and organophosphorous pesticide export from a South Florida (USA) agricultural watershed: implications of sampling frequency on ecological risk estimation. Environ Toxicol Chem 25:2847–2852. doi:10.1897/06-048.1

    Article  CAS  Google Scholar 

  • Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for the evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537. doi:10.1897/1551-5028(1996)015<1532:TPOAEA>2.3.CO;2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Makhteshim Agan® (Portugal), Sapec Agro® (Portugal) and Lactema (Portugal) for the free supply of Methomyl; Glyphosate and Propanil; and Spasor®, respectively. Authors are also thankful to Ms Ana Cristina Ferreira for technical support. The Portuguese Foundation for Science and Technology (FCT, Portugal) financed Joana Luísa Pereira (SFRH/BPD/44733/2008), Sara Cristina Antunes (SFRH/BPD/40052/2007), and Catarina Ribeiro Marques (SFRH/BD/18339/2004) by the means of individual research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana L. Pereira.

Appendix: Methodological details for use of an organic solvent in E. andrei exposure to Propanil

Appendix: Methodological details for use of an organic solvent in E. andrei exposure to Propanil

The use of organic solvents such as acetone overcomes difficulties in toxicant solubility and often facilitates the full accomplishment of test requirements (OECD 2004). Standard guidelines for toxicity testing with aquatic organisms recommend such a procedure for poorly soluble substances (e.g., OECD 2004; ISO 2005). In the avoidance assay with Propanil, water holding capacity was first adjusted (see “Materials and methods”) in both soils (dual-choice: control and test soils). The contaminated half of each replicate was then spiked with a stock solution prepared by dissolving the appropriate amount of Propanil in 1 ml pure acetone (final acetone concentration: 5 ml kg−1 dry soil). Test soil was thoroughly mixed immediately after spiking, and it was left to rest (to allow evaporation of acetone) for ca. 1 h prior to the placement of earthworms. In order to discard the hypothesis that acetone could be toxic to earthworms, a dual-choice design (see “Materials and methods”) was employed using clean soil vs. soil spiked with 1 ml acetone. Experiments were carried out in decaplicate, following the conditions and procedures described for avoidance tests (see “Materials and methods”—Earthworm avoidance assays’). A mean net response of −0.12 ± 0.15 (SE) was obtained and it was found not to deviate significantly from zero (t test, P > 0.05). Hence, acetone did not induce avoidance behaviour of earthworms, indicating that the use of acetone as organic carrier, to test the toxicity of poorly soluble chemicals, produces valid test results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J.L., Antunes, S.C., Castro, B.B. et al. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18, 455–463 (2009). https://doi.org/10.1007/s10646-009-0300-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0300-y

Keywords

Navigation