Skip to main content

Advertisement

Log in

Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor

  • DECAPAGE Project: Hydrocarbon degradation in coastal sediments*
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The behaviour of sulphate-reducing microbial community was investigated at the oxic–anoxic interface (0–2 cm) of marine sediments when submitted to oil and enhanced bioturbation activities by the addition of Hediste diversicolor. Although total hydrocarbon removal was not improved by the addition of H. diversicolor, terminal restriction fragment length polymorphism (T-RFLP) analyses based on dsrAB (dissimilatory sulphite reductase) genes and transcripts showed different patterns according to the presence of H. diversicolor which favoured the abundance of dsrB genes during the early stages of incubation. Complementary DNA (cDNA) dsrAB libraries revealed that in presence of H. diversicolor, most dsrAB sequences belonged to hydrocarbonoclastic Desulfobacteraceae, suggesting that sulphate-reducing microorganisms (SRMs) may play an active role in hydrocarbon biodegradation in sediments where the reworking activity is enhanced. Furthermore, the presence of dsrAB sequences related to sequences found associated to environments with high dinitrogen fixation activity suggested potential N2 fixation by SRMs in bioturbated-polluted sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  CAS  Google Scholar 

  • Banta GT, Holmer M, Jensen MH, Kristensen E (1999) Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat Microb Ecol 19:189–204

    Article  Google Scholar 

  • Berthe-Corti L, Höpner T (2005) Geo-biological aspects of coastal oil pollution. Palaeogeogr Palaeoclimatol Palaeoecol 219:171–189

    Article  Google Scholar 

  • Bertics VJ, Ziebis W (2009) Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. ISME J 3:1269–1285

    Article  CAS  Google Scholar 

  • Bertics VJ, Ziebis W (2010) Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ Microbiol 12:3022–3034

    Article  CAS  Google Scholar 

  • Bertics VJ, Sohm JA, Treude T, Chow CET, Capone DG, Fuhrman JA, Ziebis W (2010) Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar Ecol Prog Ser 409:1–15

    Article  CAS  Google Scholar 

  • Bonin P, Gilewicz M, Rambeloarisoa E, Mille G, Bertrand JC (1990) Effect of crude oil on denitrification and sulfate reduction in marine sediments. Biogeochemistry 10:161–174

    Article  CAS  Google Scholar 

  • Boudreau BP, Marinelli RL (1994) A modelling study of discontinuous biological irrigation. JMARRES 52:947–968

    CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984

    Article  CAS  Google Scholar 

  • Chin KJ, Sharma ML, Russell LA, O’Neill KR, Lovley DR (2008) Quantifying expression of a dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments. Microb Ecol 55:489–499

    Article  CAS  Google Scholar 

  • Christensen M, Banta GT, Andersen O (2002) Effects of the polychaetes Nereis diversicolor and Arenicola marina on the fate and distribution of pyrene in sediments. Mar Ecol Prog Ser 237:159–172

    Article  CAS  Google Scholar 

  • Chronopoulou PM et al (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15:242–252

    Article  CAS  Google Scholar 

  • Coates JD, Anderson RT, Woodward JC, Phillips EJP, Lovley DR (1996) Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ Sci Technol 30:2784–2789

    Article  CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593

    CAS  Google Scholar 

  • Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Front Microbiol 5:39. doi:10.3389/fmicb.2014.00039

  • Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Réa A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 71:3458–3467

    Article  CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    Article  CAS  Google Scholar 

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–128

    CAS  Google Scholar 

  • Findlay RH, White DC (1983) The effects of feeding by the sand dollar Mellita quinquiesperforata (Leske) on the benthic microbial community. J Exp Mar Biol Ecol 72:25–41

    Article  CAS  Google Scholar 

  • Froelich PN et al (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  Google Scholar 

  • Gilbert F, Stora G, Bertrand JC (1996) In situ bioturbation and hydrocarbon fate in an experimental contaminated Mediterranean coastal ecosystem. Chemosphere 33:1449–1458

    Article  CAS  Google Scholar 

  • Giloteaux L, Goñi-Urriza M, Duran R (2010) Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Appl Environ Microbiol 76:2856–2865

    Article  CAS  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of the population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  • Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: a review. J Mar Syst 11:269–278

    Article  Google Scholar 

  • Grossi V, Massias D, Stora G, Bertrand JC (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954

    Article  CAS  Google Scholar 

  • Halpern BS, Selkoe KA, Micheli F, Kappel CV (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv Biol 21:1301–1315

    Article  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    CAS  Google Scholar 

  • Head IM, Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10:234–239

    Article  CAS  Google Scholar 

  • Heilskov AC, Holmer M (2001) Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES J Mar Sci 58:427–434

    Article  CAS  Google Scholar 

  • Hines ME, Knollmeyer SL, Tugel JB (1989) Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnol Oceanogr 34:578–590

    Article  CAS  Google Scholar 

  • Jiang L, Zheng Y, Peng X, Zhou H, Zhang C, Xiao X, Wang F (2009) Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol Ecol 70:249–262

    Article  CAS  Google Scholar 

  • Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122

    Article  Google Scholar 

  • Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4:498–508

    Article  CAS  Google Scholar 

  • Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 68:1516–1523

    Article  CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdell F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768

    Article  CAS  Google Scholar 

  • Kniemeyer O et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901

    Article  CAS  Google Scholar 

  • Kogure K, Wada M (2005) Impacts of macrobathic bioturbation in marine sediment on bacterial metabolic activity. Microbes Environ 20:191–199

    Article  Google Scholar 

  • Kolukirik M, Ince O, Ince BK (2011) Increment in anaerobic hydrocarbon degradation activity of Halic Bay sediments via nutrient amendment. Microb Ecol 61:871–884

    Article  CAS  Google Scholar 

  • Kondo R, Nedwell DB, Purdy KJ, de Queiroz Silva S (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21:145–157

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Leloup J, Quillet L, Oger C, Boust D, Petit F (2004) Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol Ecol 47:207–214

    Article  CAS  Google Scholar 

  • Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230–238

    Article  CAS  Google Scholar 

  • Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 5

  • Loy A, Küsel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009

    Article  CAS  Google Scholar 

  • Matsui GY, Ringelberg DB, Lovell CR (2004) Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Appl Environ Microbiol 70:7053–7065

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R, François-Carcaillet F, Norling K, Mauclaire L (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–284

    Article  Google Scholar 

  • Mermillod-Blondin F, François-Carcaillet F, Rosenberg R (2005) Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. J Exp Mar Biol Ecol 315:187–209

    Article  Google Scholar 

  • Minz D et al (1999) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671

    CAS  Google Scholar 

  • Miralles G, Grossi V, Acquaviva M, Duran R, Claude Bertrand J, Cuny P (2007a) Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68:1327–1334

    Article  CAS  Google Scholar 

  • Miralles G et al (2007b) Effects of spilled oil on bacterial communities of Mediterranean coastal anoxic sediments chronically subjected to oil hydrocarbon contamination. Microb Ecol 54:646–661

    Article  CAS  Google Scholar 

  • Musat F, Harder J, Widdel F (2006) Study of nitrogen fixation in microbial communities of oil-contaminated marine sediment microcosms. Environ Microbiol 8:1834–1843

    Article  CAS  Google Scholar 

  • Nielsen LB, Finster K, Welsh DT, Donelly A, Herbert RA, De Wit R, Lomstein BAA (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71

    Article  CAS  Google Scholar 

  • Nielsen OI, Kristensen E, Holmer M (2003) Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat Microb Ecol 33:95–105

    Article  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807. doi:10.1002/jctb.2182

    Article  CAS  Google Scholar 

  • Paissé S, Coulon F, Goni-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  Google Scholar 

  • Papaspyrou S, Thessalou-Legaki M, Kristensen E (2010) The influence of infaunal (Nereis diversicolor) abundance on degradation of organic matter in sandy sediments. J Exp Mar Biol Ecol 393:148–157

    Article  Google Scholar 

  • Postgate JR (1984) The sulfate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Purdy KJ, Nedwell DB, Martin Embley T, Takii S (2001) Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments. FEMS Microbiol Ecol 36:165–168

    Article  CAS  Google Scholar 

  • Raskin L, Rittmann BE, Stahl DA (1996) Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl Environ Microbiol 62:3847–3857

    CAS  Google Scholar 

  • Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl Environ Microbiol 66:3592–3602

    Article  CAS  Google Scholar 

  • Rice P, Longden L, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  Google Scholar 

  • Riederer-Henderson MA, Wilson PW (1970) Nitrogen fixation by sulphate-reducing bacteria. J Gen Microbiol 61:27–31

    Article  CAS  Google Scholar 

  • Rodríguez-Blanco A, Antoine V, Pelletier E, Delille D, Ghiglione JF (2010) Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea. Environ Pollut 158:663–673

    Article  Google Scholar 

  • Röling WFM (2007) Do microbial numbers count? Quantifying the regulation of biogeochemical fluxes by population size and cellular activity. FEMS Microbiol Ecol 62:202–210

    Article  Google Scholar 

  • Rooney-Varga JN, Devereux R, Evans RS, Hines ME (1997) Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 63:3895–3901

    CAS  Google Scholar 

  • Rothermich MM, Hayes LA, Lovley DR (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ Sci Technol 36:4811–4817

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Satoh H, Nakamura Y, Okabe S (2007) Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments. Appl Environ Microbiol 73:1341–1348

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  Google Scholar 

  • So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    CAS  Google Scholar 

  • Stauffert M et al (2013) Impact of crude oil on bacterial communities’ structure in bioturbated sediments. Plos One 8:e65347. doi:10.1371/journal.pone.0065347

  • Steppe TF, Paerl HW (2005) Nitrogenase activity and nifH expression in a marine intertidal microbial mat. Microb Ecol 49:315–324

    Article  CAS  Google Scholar 

  • Suárez-Suárez A et al (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–1499

    Article  Google Scholar 

  • Taketani RG, dos Santos HF, van Elsas JD, Rosado AS (2009) Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 96:343–354

    Google Scholar 

  • Taketani RG, Franco NO, Rosado AS, van Elsas JD (2010) Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 48:7–15

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Teal JM, Valiela I, Berlo D (1979) Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnol Oceanogr 24:126–132

    Article  CAS  Google Scholar 

  • Toccalino PL, Johnson RL, Boone DR (1993) Nitrogen limitation and nitrogen-fixation during alkane biodegradation in a sandy soil. Appl Environ Microbiol 59:2977–2983

    CAS  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37:5213–5218

    Article  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  Google Scholar 

  • Zhang W, Song LS, Ki JS, Lau CK, Li XD, Qian PY (2008) Microbial diversity in polluted harbor sediments II: sulfate-reducing bacterial community assessment using terminal restriction fragment length polymorphism and clone library of dsrAB gene. Estuarine Coast Shelf Sci 76:682–691

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French program ANR DHYVA (project ANR-06-SEST-09) and ANR DECAPAGE (project ANR-CESA-2011-006 01). We would like to thank Jerome Gury and all partners of the DHYVA project for their useful discussions. We acknowledge the Regional Platform for Environmental Microbiology PREMICE supported by the Aquitaine Regional Government Council (France) and the urban community of Pau-Pyrénées (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Cravo-Laureau.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stauffert, M., Cravo-Laureau, C. & Duran, R. Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor . Environ Sci Pollut Res 22, 15273–15284 (2015). https://doi.org/10.1007/s11356-014-3624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3624-y

Keywords

Navigation