Abbas N, Shad SA, Razaq M (2012) Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pestic Biochem Physiol 103:181–188
CAS
Google Scholar
Abbott VA, Nadeau JL, Higo HA, Winston ML (2008) Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol 101:784–796
CAS
Google Scholar
Aebischer NJ (1990) Assessing pesticide effects on non-target invertebrates using long-term monitoring and time-series modelling. Funct Ecol 4:369–373
Google Scholar
Ahmad M, Sayyed AH, Saleem MA, Ahmad M (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 27:1367–1372
CAS
Google Scholar
Ahmad M, Rafiq M, Arif MI, Sayyed AH (2011) Toxicity of some commonly used insecticides against Coccinella undecimpunctata (Coleoptera: Coccinellidae). Pak J Zool 43:1161–1165
CAS
Google Scholar
Ahmad S, Ansari MS, Ahmad N (2013) Acute toxicity and sublethal effects of the neonicotinoid imidacloprid on the fitness of Helicoverpa armigera (Lepidoptera: Noctuidae). Int J Trop Insect Sci 33:264–275
Google Scholar
Aizen, Harder (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918
CAS
Google Scholar
Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12:774–782
Google Scholar
Albajes R, López C, Pons X (2003) Predatory fauna in cornfields and response to imidacloprid seed treatment. J Econ Entomol 96:1805–1813
Google Scholar
Alexander AC, Heard K, Culp JM (2008) Emergent body size of mayfly survivors. Freshw Biol 53:171–180
Google Scholar
Aliouane Y, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28:113–122
CAS
Google Scholar
Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682
CAS
Google Scholar
Anon (2012) EFSA Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA Journal 10:2752
Google Scholar
Ansari MS, Ali H, Shafqat S (2012) Insecticidal effect on a population of Spilarctia obliqua (Lepidoptera: Arctiidae). Entomol Res 42:330–338
CAS
Google Scholar
Apenet, (2010) http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3280
Arain MS, Hu XX, Li GQ (2014) Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides. Bull Environ Contam Toxicol 92:190–195
CAS
Google Scholar
Arena, M., and Sgolastra, F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicol, 1–11
Asaro C, Creighton J (2011) Use of systemic fipronil and imidacloprid to control regeneration pests of loblolly pine. J Econ Entomol 104:1272–1279
CAS
Google Scholar
Ashauer R, Hintermeister A, Potthoff E, Esche BI (2011) Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquat Toxicol 103:38–45
CAS
Google Scholar
Aufauvre J, Biron DG, Vidau C, Fontbonne R, Roudel M, Diogon M, Vigues B, Belzunces LP, Delbac F, Blot N (2012) Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Scientific reports 2, srep00326-srep00326
Balderrama N, Nunez J, Giurfa M, Torrealba J, Dealbornoz EG, Almeida LO (1996) A deterrent response in honeybee (Apis mellifera) foragers: dependence on disturbance and season. J Insect Physiol 42:463–470
CAS
Google Scholar
Barbara G, Grünewald B, Paute S, Gauthier M, Raymond-Delpech V (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 8:19–29
CAS
Google Scholar
Barbieri RF, Lester PJ, Miller AS, Ryan KG (2013) A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proc R Soc B Biol Sci 28:20132157
Google Scholar
Bartlett MD, Briones MJI, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46:67–73
Google Scholar
Baylay AJ, Spurgeon DJ, Svendsen C, Griffin JL, Swain SC, Sturzenbaum SR, Jones OAH (2012) A metabolomics based test of independent action and concentration addition using the earthworm Lumbricus rubellus. Ecotoxicology 21:1436–1447
CAS
Google Scholar
Beketov MA, Liess M (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Arch Environ Contam Toxicol 55:247–253
CAS
Google Scholar
Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110:11039–11043. doi:10.1073/pnas.1305618110
CAS
Google Scholar
Belzunces LP (2006) Rapport d’étude du programme Etude comparée des impacts de trois classes d’insecticides néonicotinoïdes chez l’abeille. Programme communautaire sur l’apiculture Année 2006
Belzunces LP, Tchamitchian S, Brunet JL (2012) Neural effects of insecticides in the honey bee. Apidologie 43:348–370
CAS
Google Scholar
Benzidane Y, Touinsi S, Motte E, Jadas-Hécart A, Communal PY, Leduc L, Thany SH (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag Sci 66:1351–1359
CAS
Google Scholar
Berghahn R, Mohr S, Hübner V, Schmiediche R, Schmiedling I, Svetich-Will E, Schmidt R (2012) Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquat Toxicol 122:56–66
Google Scholar
Biocca M, Conte E, Pulcini P, Marinelli E, Pochi D (2011) Sowing simulation tests of a pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust from maize dressed seed. J Environ Sci Health B 46:438–448
CAS
Google Scholar
Bloem S, Mizell RF, Bloem KA, Hight SD, Carpenter JE (2005) Laboratory evaluation of insecticides for control of the invasive Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla Entomol 88:395–400
CAS
Google Scholar
Boggs CL (2003) Environmental variation, life histories, and allocation. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 185–206
Google Scholar
Bonmatin JM, Moineau I, Charvet R, Colin ME, Fleche C, Bengsch ER et al (2005) Behaviour of imidacloprid in fields: toxicity for honey bees. In: Lichtfourse E, Schwarzbauer J, Robert D (eds) In environmental chemistry: green chemistry and pollutants in ecosystems. Springer, New York, pp 483–494
Google Scholar
Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser D, Krupke C, Liess M, Long E, Marzaro M, Mitchell E, Noome D, Simon-Delso N, Tapparo A (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res. doi:10.1007/s11356-014-3332-7 (this issue)
Google Scholar
Bordereau-Dubois B, List O, Calas-List D, Marques O, Communal PY, Thany SH, Lapied B (2012) Transmembrane potential polarization, calcium influx and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nAChR to the neonicotinoid insecticides. J Pharmacol Exp Ther. doi:10.1124/jpet.111.188060
Google Scholar
Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C (2003) Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insect 56:63–67
Google Scholar
Bosch J, Kemp WP (2006) Bee population returns and cherry yields in an orchard pollinated with Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 99:408–413
Google Scholar
Bostanian NJ, Hardman JM, Ventard E, Racette G (2005) The intrinsic toxicity of several neonicotinoids to Lygus lineolaris and Hyaliodes vitripennis, a phytophagous and a predacious mired. Pest Manag Sci 61:991–996
CAS
Google Scholar
Böttger R, Feibicke M, Schaller J, Dudel G (2013) Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosms. Ecotoxicol Environ Saf 93:93–100
Google Scholar
Braun G, Bicker G (1992) Habituation of an appetitive reflex in the honeybee. J Neurophysiol 67:588–598
CAS
Google Scholar
Breeze TD, Bailey AP, Balcombe KG et al (2011) Pollination services in the UK: how important are honeybees? Agric Ecosyst Environ 142:137–143
Google Scholar
Brittain C, Bommarco R, Vighi M, Settele J, Potts SG (2010a) Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol Conserv 143:1860–1867. doi:10.1016/j.biocon.2010.04.029
Google Scholar
Brittain CA, Vighi M, Bommarco R, Settele J, Potts SG (2010b) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic App Ecol 11:106–115
CAS
Google Scholar
Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C, Corbett SJ, Beaumont DA, Chapman JW (2012) Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J Appl Ecol 49:1009–1019
Google Scholar
Broznic D, Marinic J, Tota M, Juresic GC, Petkovic O, Milin C (2012) Hysteretic behaviour of imidacloprid sorption–desorption in soils of Croatian coastal regions. Soil Sediment Contam 21:850–871
CAS
Google Scholar
Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee Apis mellifera L. Pest Manag Sci 61:742–748
CAS
Google Scholar
Brunner JF, Beers EH, Dunley JE, Doerr M, Granger K (2005) Role of neonicotinyl insecticides in Washington apple integrated pest management. Part I. Control of lepidopteran pests. J Insect Sci 5
Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16:1463–1493
Google Scholar
Byrne FJ, Toscano NC (2007) Lethal toxicity of systemic residues of imidacloprid against Homalodisca vitripennis (Homoptera: Cicadellidae) eggs and its parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae). Biol Control 43:130–135
CAS
Google Scholar
Calderone NW (2012) Insect pollinated crops, insect pollinators and us agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:e37235. doi:10.1371/journal.pone.0037235
CAS
Google Scholar
Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines: IMIDACLOPRID. Scientific supporting document. ISBN 978-1-896997-71-1 PDF
Capowiez Y, Berard A (2006) Assessment of the effects of imidacloprid on the behaviour of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicol Environ Saf 64:198–206
CAS
Google Scholar
Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behaviour as a biomarker—a case study using imidacloprid. Pedobiologia 47:542–547
Google Scholar
Capowiez Y, Rault M, Costagliola G, Mazzia C (2005) Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icterica). Biol Fertil Soils 41:135–143
CAS
Google Scholar
Capowiez Y, Bastardie F, Costagliola G (2006) Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil. Soil Biol Biochem 38:285–293
CAS
Google Scholar
Capowiez Y, Dittbrenner N, Rault M, Triebskorn R, Hedde M, Mazzia C (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ Pollut 158:388–393
CAS
Google Scholar
Casida JE (2011) Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem 59:2923–2931
CAS
Google Scholar
Chagnon M, Gingras J, de Oliveira D (1993) Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J Econ Entomol 86:416–420
Google Scholar
Charmillot PJ, Pasquier D, Salamin C, Ter-Hovannesyan A (2007) Ovicidal and larvicidal effectiveness of insecticides applied by dipping apples on the small fruit tortrix Grapholita lobarzewskii. Pest Manag Sci 63:677–681
CAS
Google Scholar
Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vannier F, Locker D, Decoville M (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48(7):4096–4102
CAS
Google Scholar
Chen RZ, Klein MG (2012) Efficacy of insecticides against the rice stem-borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and use of sex pheromones to time accurately the yearly application. Int J Pest Manag 58:353–359
Google Scholar
Chen XD, Culbert E, Herbert V, Stark JD (2010) Mixture effects of the adjuvant R-11 and the insecticide imidacloprid on population growth rate and other parameters of Ceriodaphnia dubia. Ecotoxicol Environ Saf 73:132–137
CAS
Google Scholar
Cheng XA, Chang C, Dai SM (2010) Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest Manag Sci 66:762–766
CAS
Google Scholar
Chowdhury S, Mukhopadhyay S, Bhattacharyya A (2012) Degradation dynamics of the insecticide: Clothianidin (Dantop 50 % WDG) in a tea field ecosystem. Bull Environ Contam Toxicol 89:340–343
Cichon LB, Soleno J, Anguiano OL, Garrido SA, Montagna CM (2013) Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. J Econ Entomol 106:939–944
CAS
Google Scholar
Coleman DC, Ingham ER (1988) Carbon, nitrogen, phosphorus and sulphur cycling in terrestrial ecosystems. Biogeochemistry 5:3–6
Google Scholar
Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S, Vermandere JP (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 47:387–395
CAS
Google Scholar
Couvillon MJ, Barton SN, Cohen JA, Fabricius OK, Kaercher MH, Cooper LS, Silk MJ, Helantera H, Ratnieks FLW (2010) Alarm pheromones do not mediate rapid shifts in honey bee guard acceptance threshold. J Chem Ecol 36:1306–1308
CAS
Google Scholar
Cox L, Koskinen WC, Yen PY (1997) Sorption–desorption of imidacloprid and its metabolites in soils. J Agric Food Chem 45:1468–1472
CAS
Google Scholar
Cox L, Hermosin MC, Cornejo J (2004) Influence of organic amendments on sorption and dissipation of imidacloprid in soils. Int J Environ Anal Chem 84:95–102
CAS
Google Scholar
Cresswell JE (2011) A meta-analysis of experiments testing the effects of neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–154
CAS
Google Scholar
Cresswell JE, Thompson H (2012) Comment on “A common pesticide decreases foraging success and survival in honey bees”. Science 337:1453
CAS
Google Scholar
Cresswell JE, Desneux N, van Engelsdorp D (2012a) Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill’s epidemiological criteria. Pest Manag Sci 68:819–827
CAS
Google Scholar
Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li Y, Wheeler JG, Laycock I, Pook CJ, De Ibarra NH, Smirnoff N, Tyler CR (2012b) Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115:365–371
Google Scholar
Cutler GC, Scott-Dupree C (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J Econ Entomol 100:765–772
CAS
Google Scholar
Davis BNK, Lakhani KH, Yates TJ (1991a) The hazards of insecticides to butterflies of field margins. Agric Ecosyst Environ 36:151–161
CAS
Google Scholar
Davis BNK, Lakhani KH, Yates TJ, Frost AJ (1991b) Bioassays of insecticide spray drift: the effects of wind speed on the mortality of Pieris brassicae larvae (Lepidoptera) caused by diflubenzuron. Agric Ecosyst Environ 36:141–149
CAS
Google Scholar
Davis BNK, Lakhani KH, Yates TJ, Frost AJ, Plant RA (1993) Insecticide drift from ground-based, hydraulic spraying of peas and brussels sprouts: bioassays for determining buffer zones. Agric Ecosyst Environ 43:93–108
Google Scholar
Decourtye A, Devillers J (2010) Ecotoxicology of neonicotinoids insecticides in the bees. In: Thany S (ed) Insect nicotinic acetylcholine receptors. Landes Bioscience, St. Austin
Google Scholar
Decourtye A, Lacassie E, Pham-Delegue MH (2003) Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59:269–278
CAS
Google Scholar
Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delègue MH (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92
CAS
Google Scholar
Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419
CAS
Google Scholar
Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250
CAS
Google Scholar
Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277
Google Scholar
DEFRA (2007) Assessment of the risk posed to honeybees by systemic pesticides. PS2322, CSL York, UK
DEFRA (2009) Intermittent exposure in terrestrial invertebrates—a case study with honeybees. PS2341, CSL York, UK
Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16
Google Scholar
Delbeke E, Vercruysse P, Tirry L, de Clercq P, Degheele D (1997) Toxicity of diflubenzuron, pyriproxyfen, imidacloprid and diafenthiuron to the predatory bug Orius laevigatus (Het.: Anthocoridae). Entomophaga 42:349–358
CAS
Google Scholar
Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, Moles A, Snart C, Ryder T, Ortori CA, Barrett DA, Schuster E, Stöger R (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8:e68191
CAS
Google Scholar
Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106
CAS
Google Scholar
Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18
CAS
Google Scholar
Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A 110:18466–18471. doi:10.1073/pnas.1314923110
Google Scholar
Diez-Rodrijguez GI, de Baptista GC, Trevizani LR, Haddad ML, Nava DE (2006) Residues of thiamethoxam, aldicarb and its metabolites in coffee leaves and effect on the control of Leucoptera coffeella (Guerin-Meneville) (Lepidoptera: Lyonetiidae). Neotropical Entomol 35:257–263
Google Scholar
Dilling C, Lambdin P, Grant J, Rhea R (2009) Community response of insects associated with eastern hemlock to imidacloprid and horticultural oil treatments. Environ Entomol 38:53–66
Google Scholar
Dittbrenner N, Triebskorn R, Moser I, Capowiez Y (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology 19:1567–1573
CAS
Google Scholar
Dittbrenner N, Schmitt H, Capowiez Y, Triebskorn R (2011a) Sensitivity of Eisenia fetida in comparison to Aporrectodea caliginosa and Lumbricus terrestris after imidacloprid exposure. Body mass change and histopathology. J Soils Sediments 11:1000–1010
CAS
Google Scholar
Dittbrenner N, Moser I, Triebskorn R, Capowiez Y (2011b) Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere 84:1349–1355
CAS
Google Scholar
Dittbrenner N, Capowiez Y, Kohler H, Triebskorn R (2012) Stress protein response (Hsp70) and avoidance behaviour in Eisenia fetida, Aporrectodea caliginosa, and Lumbricus terrestris when exposed to imidacloprid. J Soils Sediments 12:198–206
CAS
Google Scholar
Dively G, Hooks C (2010) Use patterns of neonicotinoid insecticides on cucurbit crops and their potential exposure to honey bees. Progress report, strategic agricultural initiative grants program, EPA region 3
Doffou NM, Ochou OG, Kouassi P (2011) Susceptibility of Pectinophora gossypiella (Lepidoptera: Gelechiidae) and Cryptophlebia leucotreta (Lepidoptera: Tortricidae) to insecticides used on cotton crops in Côte d’Ivoire, West Africa. Implications in insecticide resistance pest management strategies. Resistant Pest Manag Newsl 20:10–15
Google Scholar
Dogramaci M, Tingey WM (2008) Comparison of insecticide resistance in a North American field population and a laboratory colony of potato tuberworm (Lepidoptera: Gelechiidae). J Pest Sci 81:17–22
Google Scholar
Dondero F, Negri A, Boatti L, Marsano F, Mignone F, Viarengo A (2010) Transcriptomic and proteomic effects of a neonicotinoid insecticide mixture in the marine mussel (Mytilus galloprovincialis, Lam.). Sci Total Environ 15:3775–3786
Google Scholar
Donnarumma L, Pulcini P, Pochi D, Rosati S, Lusco L, Conte E (2011) Preliminary study on persistence in soil and residues in maize of imidacloprid. J Environ Sci Health B 46:469–472
CAS
Google Scholar
Dunley JE, Brunner JF, Doerr MD, Beers EH (2006) Resistance and cross-resistance in populations of the leafrollers, Choristoneura rosaceana and Pandemis pyrusana, in Washington apples. J Insect Sci 6
Dupuis JP, Gauthier M, Raymond-Delpech V (2011) Expression patterns of nicotinic subunits alpha 2, alpha 7, alpha 8, and beta 1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 106:1604–1613
CAS
Google Scholar
Durham EW, Scharf ME, Siegfried BD (2001) Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae (Lepidoptera: Crambidae). Pestic Biochem Physiol 71:97–106
CAS
Google Scholar
Durham EW, Siegfried BD, Scharf ME (2002) In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Manag Sci 58:799–804
CAS
Google Scholar
Easton AH, Goulson D (2013) The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLoS One 8:e54819
CAS
Google Scholar
Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London
Google Scholar
EFSA (2006) Draft Assessment Report (DAR). Draft assessment report: initial risk assessment provided by the rapporteur member State Germany for the existing active substance imidacloprid
Eisenback BM, Salom SM, Kok LT, Lagalante AF (2010) Lethal and sublethal effects of imidacloprid on Hemlock woolly Adelgid (Hemiptera: Adelgidae) and two introduced predator species. J Econ Entomol 103:1222–1234
CAS
Google Scholar
El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39
Google Scholar
El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54:653–661
Google Scholar
El Hassani AK, Dupuis JP, Gauthier M, Armengaud C (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9:91–100
Google Scholar
Elbert A, Becker B, Hartwig J, Erdelen C (1991) Imidacloprid—a new systemic insecticide. Plant Prot Nachr Bayer 44:113–136
CAS
Google Scholar
Epstein LH, Robinson JL, Roemmich JN, Marusewski A (2011) Slow rates of habituation predict greater zBMI gains over 12 months in lean children. Eat Behav 12:214–218
European Comission (2010) Commission Directive 2010/21/EU of 12 March 2010 amending Annex I to Council Directive 91/414/EEC as regards the specific provisions relating to clothianidin, thiamethoxam, fipronil and imidacloprid
Fagin D (2012) The learning curve. Nature 490:462–465. doi:10.1038/490462a
CAS
Google Scholar
Fang Q, Huang CH, Ye GY, Yao HW, Cheng JA et al (2008) Differential fipronil susceptibility and metabolism in two rice stem borers from China. J Econ Entomol 101:1415–1420
CAS
Google Scholar
Farooqui T (2013) A potential link among biogenic amines based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int 62:122–136
CAS
Google Scholar
Faucon JP, Aurieres C, Drajnudel P, Mathieu L, Ribiere M, Martel AC, Zeggane S, Chauzat MP, Aubert MFA (2005) Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci 61:111–125
CAS
Google Scholar
Feber RE, Firbank LG, Johnson PJ, Macdonald DW (1997) The effects of organic farming on pest and non-pest butterfly abundance. Agric Ecosyst Environ 64:133–139
Google Scholar
Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 37:301–308
Google Scholar
Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B et al (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 9:e91364
Google Scholar
Ford KA, Casida JE (2006) Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem Res Toxicol 19:1549–1556
CAS
Google Scholar
Fossen M (2006) Environmental fate of imidacloprid. Environmental monitoring department of pesticide regulation, California, USA
Franklin MT, Winston ML, Morandin LA (2004) Effects of clothianidin on Bombus impatiens (Hymentoptera: Apidae) colony health and foraging behaviour. J Econ Entomol 97:369–373
CAS
Google Scholar
Frantzios G, Paptsiki K, Sidiropoulou B, Lazaridis G, Theophilidis G, Mavragani-Tsipidou P (2008) Evaluation of insecticidal and genotoxic effects of imidacloprid and acetochlor in Drosophila melanogaster. J Appl Entomol 132:583–590
CAS
Google Scholar
Freemark K, Boutin C (1995) Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agric Ecosyst Environ 52:67–91
Google Scholar
Funayama K, Ohsumi S (2007) Control effect of neonicotinoid insecticides on apple leaf miner, Phyllonorycter ringoniella (Lepidoptera: Gracillariidae). Annu Rep Soc Plant Protect N Jpn 58:156–158
Google Scholar
Galvanho JP, Carrera MP, Moreira DDO, Erthal M, Silva CP, Samuels RI (2013) Imidacloprid inhibits behavioral defences of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J Insect Behav 26:1–13. doi:10.1007/S10905-012-9328-6
Google Scholar
Gauthier M (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In: Thany S (ed) Insect nicotinic acetylcholine receptors. Springer, Berlin
Google Scholar
Gawleta N, Zimmermann Y, Eltz T (2005) Repellent foraging scent recognition across bee families. Apidologie 36:325–330
Google Scholar
Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105
CAS
Google Scholar
Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108
CAS
Google Scholar
Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Bernardo AD, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815
CAS
Google Scholar
Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D, Tapparo A (2012) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J Appl Entomol 136:17–26
CAS
Google Scholar
Giurfa M (1993) The repellent scent-mark of the honeybee Apis mellifera ligustica and its role as communication cue during foraging. Insect Soc 40:59–67
Google Scholar
Gomez-Eyles JL, Svendsen C, Lister L, Martin H, Hodson ME, Spurgeon DJ (2009) Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicol Environ Saf 72:71–79
CAS
Google Scholar
Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26
Google Scholar
Goulson D (2010) Bumblebees: behaviour, ecology and conservation. Oxford University Press, Oxford
Google Scholar
Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14:669–678
Google Scholar
Gradish AE, Scott-Dupree CD, Shipp L, Harrisa CR, Ferguson G (2010) Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag Sci 66:142–146
CAS
Google Scholar
Graystock P, Yates K, Darvill B, Goulson D, Hughes WOH (2013a) Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J Invertebr Pathol 114:114–119
Google Scholar
Graystock P, Yates K, Evison S, Darvill B, Goulson D, Hughes WOH (2013b) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50:1207–1215
Google Scholar
Greatti M, Sabatini AG, Barbattini R, Rossi S, Stravisi A (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bull Insect 56:69–72
Google Scholar
Greenleaf S, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci U S A 103:13890–13895
CAS
Google Scholar
Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Physiol 99:200–207
CAS
Google Scholar
Gross M (2008) Pesticides linked to bee deaths. Curr Biol Vol 18:684
Google Scholar
Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191
CAS
Google Scholar
Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222
CAS
Google Scholar
Gupta S, Gajbhiye VT (2007) Persistence of acetamiprid in soil. Bull Environ Contam Toxicol 78:349–352
CAS
Google Scholar
Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19:1612–1619
CAS
Google Scholar
Hatjina F, Papaefthimiou C, Charistos L, Dogaroglu T, Bouga M, Emmanouil C, Arnold G (2013) Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie 44:467–480
CAS
Google Scholar
Hayasaka D, Korenaga T, Suzuki K, Saito F, Sánchez-Bayo F, Goka K (2012) Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80:355–62. doi:10.1016/j.ecoenv.2012.04.004
CAS
Google Scholar
Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol 33:149–168
CAS
Google Scholar
He YP, Gao CF, Cao MZ, Chen WM, Huang LQ et al (2007) Survey of susceptibilities to monosultap, triazophos, fipronil, and abamectin in Chilo suppressalis (Lepidoptera: Crambidae). J Econ Entomol 100:1854–1861
CAS
Google Scholar
He YP, Gao CF, Chen WM, Huang LQ, Zhou WJ et al (2008) Comparison of dose responses and resistance ratios in four populations of the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), to 20 insecticides. Pest Manag Sci 64:308–315
CAS
Google Scholar
He YP, Zhang JF, Gao CF, Su JY, Chen JM et al (2013) Regression analysis of dynamics of insecticide resistance in field populations of Chilo suppressalis (Lepidoptera: Crambidae) during 2002–2011 in China. J Econ Entomol 106:1832–1837
CAS
Google Scholar
Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012a) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350
CAS
Google Scholar
Henry M, Beguin M, Requier F, Rollin O, Odoux J, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012b) Response to comment on “A common pesticide decreases foraging success and survival in honey bees”. Science 337:1453
CAS
Google Scholar
Hill TA, Foster RE (2000) Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). J Econ Entomol 93:763–768
CAS
Google Scholar
Hoi KK, Daborn PJ, Battlay P, Robin C, Batterham P, O’Hair RA, Donald WA (2014) Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizes the insecticide imidacloprid in vivo. Anal Chem 86(7):3525–3532
CAS
Google Scholar
Huang SJ, Xu JF, Han ZJ (2006) Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. Int J Pest Manag 52:209–213
CAS
Google Scholar
Illarionov AI (1991) Toxic effect of some insecticides on the honeybee. Agrokhimiva 8:121–125
Google Scholar
Iwasa T, Motoyama N, Ambrose JT, Roe MR (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378
CAS
Google Scholar
James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95:729–732
CAS
Google Scholar
Jeschke P, Nauen R, Schindler M, Elbert A (2010) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908
Google Scholar
Jinguji H, Thuyet DQ, Uéda T, Watanabe H (2013) Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Water Environ 11:277–284
Google Scholar
Jones MM, Robertson JL, Weinzierl RA (2010) Susceptibility of Oriental fruit moth (Lepidoptera: Tortricidae) larvae to selected reduced-risk insecticides. J Econ Entomol 103:1815–1820
Google Scholar
Jones MM, Robertson JL, Weinzierl RA (2012) Toxicity of thiamethoxam and mixtures of chlorantraniliprole plus acetamiprid, esfenvalerate, or thiamethoxam to neonates of oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 105:1426–1431
CAS
Google Scholar
Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou AG, Savakis C (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One 7:e40296. doi:10.1371/journal.pone.0040296
CAS
Google Scholar
Kalajdzic P1, Markaki M, Oehler S, Savakis C (2013) Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line. Food Chem Toxicol 60:355–359. doi:10.1016/j.fct.2013.07.080
CAS
Google Scholar
Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212
CAS
Google Scholar
Khani A, Ahmadi F, Ghadamyari M (2012) Side effects of imidacloprid and abamectin on the Mealybug destroyer, Cryptolaemus montrouzieri. Trakia J Sci 10:30–35
Google Scholar
Kilpatrick AL, Hagerty AM, Turnipseed SG, Sullivan MJ, Bridges WC (2005) Activity of selected neonicotinoids and dicrotophos on nontarget arthropods in cotton: implications in insect management. J Econ Entomol 98:814–820
CAS
Google Scholar
Kinkler H, Löser S, Rehnelt K (1987) 10 Jahre Erforschung des Moselapollofalters (Parnassius apollo vinningensis STICHEL 1899, Lepidoptera, Papilionidae) im modernen Weinbaugebiet der Mosel–ein Beitrag zu seiner Rettung. Commun Assoc rheinisch-westfälischer Lepidopterologen 5:74–96
Google Scholar
Klein AM, Vaissie’re BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313
Google Scholar
Kluser S, Neumann P, Chauzat MP, Pettis JS (2011) UNEP emerging issues: global honey bee colony disorder and other threats to insect pollinators. http://www.unep.org. Accessed 25 October 2012
Knight AL (2010) Cross-resistance between azinphos-methyl and acetamiprid in populations of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), from Washington State. Pest Manag Sci 66:865–874
CAS
Google Scholar
Knight ME, Martin AP, Bishop S, Osborne JL, Hale RJ, Sanderson RA, Goulson D (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol 14:1811–1820
CAS
Google Scholar
Knoepp JD, Vose JM, Michael JL, Reynolds BC (2012) Imidacloprid movement in soils and impacts on soil microarthropods in Southern Appalachian eastern hemlock stands. J Environ Qual 41:469–478
CAS
Google Scholar
Knollengberg WG, Merritt RW, Lawson DL (1985) Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain. Am Midl Nat J 113:1–6
Google Scholar
Kramarz P, Stark JD (2003) Population level effects of cadmium and the insecticide, imidacloprid to the Parasitoid, Aphidius ervi after exposure through its host, the pea aphid, Acyrthosiphon pisum. Biol Control 27:310–314
CAS
Google Scholar
Kreutzweiser DP, Sibley PK (2013) Aquatic communities: pesticide impacts. In: Jorgensen SE (ed) Encyclopedia of environmental management. Taylor and Francis, New York, pp 312–321
Google Scholar
Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Thompson DG (2008a) Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms? J Environ Qual 37:639–646
CAS
Google Scholar
Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Holmes SB, Thompson DG (2008b) Effects on litter-dwelling earthworms and microbial decomposition of soil-applied imidacloprid for control of wood-boring insects. Pest Manag Sci 64:112–118
CAS
Google Scholar
Kreutzweiser DP, Thompson DG, Scarr TA (2009) Imidacloprid in leaves from systemically treated trees may inhibit litter breakdown by non-target invertebrates. Ecotoxicol Environ Saf 72:1053–1057
CAS
Google Scholar
Krischik VA, Landmark AL, Heimpel GE (2007) Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environ Entomol 36:1238–1245
CAS
Google Scholar
Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228
Google Scholar
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268
CAS
Google Scholar
Kullik SA, Sears MK et al (2011) Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development. J Econ Entomol 104:484–93
CAS
Google Scholar
Kunkel BA, Held DW, Potter AD (1999) Impact of halofenozide, imidacloprid, and bendiocarb on beneficial invertebrates and predatory activity in turfgrass. J Econ Entomol 92:922–930
CAS
Google Scholar
Kunkel BA, Held DW, Potter DA (2001) Lethal and sub-lethal effects of bendiocarb, halofenozide, and imidacloprid on Harpalus pennysylvanicus (Coleoptera: Carabidae) following different modes of exposure in turfgrass. J Econ Entomol 94:60–67
CAS
Google Scholar
Kurwadkar ST, Dewinne D, Wheat R, McGahan DG, Mitchell FL (2013) Time dependent sorption behaviour of dinotefuran, imidacloprid and thiamethoxam. J Environ Sci Health B 48:237–242
CAS
Google Scholar
Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134
CAS
Google Scholar
Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201
CAS
Google Scholar
Larson JL, Redmond CT, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68:740–748
CAS
Google Scholar
Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012a) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945
CAS
Google Scholar
Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012b) Erratum to: Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1946–1946
CAS
Google Scholar
LeBlanc HMK, Culp JM, Baird DJ, Alexander AC, Cessna AJ (2012) Single versus combined lethal effects of three agricultural insecticides on larvae of the freshwater insect Chironomus dilutes. Arch Environ Contam Toxicol 63:378–390
CAS
Google Scholar
Lee KW (1985) Earthworms: their ecology and relationship with soils and land use. Academic, Sydney
Google Scholar
Lee JC, Menalled FD, Landis DA (2001) Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol 38:472–483
Google Scholar
Li AG, Yang YH, Wu SW, Li C, Wu YD (2006) Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 99:914–919
CAS
Google Scholar
Li XT, Huang QC, Yuan JZ, Tang ZH (2007) Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pestic Biochem Physiol 89:169–174
Google Scholar
Liang GM, Chen W, Liu TXTX (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Prot 22:333–340
CAS
Google Scholar
Liess M, Beketov M (2011) Traits and stress—keys to identify community effects at low toxicant level. Ecotoxicology 20:1328–1340
CAS
Google Scholar
Liess M, Beketov MA (2012) Rebuttal related to “Traits and stress—keys to identify community effects of low levels of toxicants in test systems”. Ecotoxicology 21:300–303
CAS
Google Scholar
Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965
CAS
Google Scholar
Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406:484–90
CAS
Google Scholar
Liess M, Foit K, Becker A, Hassold E, Dolciotti I, Kattwinkel M, Duquesne S (2013) Culmination of low-dose pesticide effects. Environ Sci Tech 47:8862–8868
CAS
Google Scholar
Lintott DR (1992) NTN 33893 (240 FS formulation): acute toxicity to the mysid, Mysidopsis bahia, under flow-through conditions. Toxicon Environmental Sciences, Jupiter, Florida (performing laboratory). Miles Incorporated, Kansas City, Missouri (submitting company). 43 pp. Miles Report No. 103845
Little EE (1990) Behavioural toxicology; stimulating challenges for a growing discipline. Environ Toxicol Chem 9:1–2
Google Scholar
Longley M, Sotherton NW (1997) Factors determining the effects of pesticides upon butterflies inhabiting arable farmland. Agric Ecosyst Environ 61:1–12
CAS
Google Scholar
Lucas E, Giroux S, Demougeot S, Duchesne RM, Coderre D (2004) Compatibility of a natural enemy, Coleomegilla maculata lengi (Col., Coccinellidae) and four insecticides used against the Colorado potato beetle (Col., Chrysomelidae). J Appl Entomol 128:233–239
Google Scholar
Lukancic S, Zibrat U, Mezek T, Jerebic A, Simcic T, Brancelj A (2010) Effects of exposing two non-target crustacean species, Asellus aquaticus L., and Gammarus fossarum Koch., to atrazine and imidacloprid. Bull Environ Contam Toxicol 84(1):85–90. doi:10.1007/s00128-009-9854-x
CAS
Google Scholar
Luo Y, Zang Y, Zhong Y, Kong Z (1999) Toxicological study of two novel pesticides on earthworm Eisenia fetida. Chemosphere 39:2347–2356
CAS
Google Scholar
Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9:1
Google Scholar
Magalhaes LC, Walgenbach JF (2011) Life stage toxicity and residual activity of insecticides to codling moth and Oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 104:1950–1959
CAS
Google Scholar
Maisonnasse A, Lenoir JC, Beslay D, Crauser D, Le Conte Y (2010) E-b-Ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS One 5
Mani S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insect 63:153–160
Google Scholar
Mann RS, Uppal SK, Sharma S, Mann KK (2009) Soil efficacy of fipronil to early stage pests of sugarcane, and its effect on development on Chilo infuscatellus Snellen (Crambidae: Lepidoptera). Int J Pest Manag 55:307–315
CAS
Google Scholar
Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Petrucco Toffolo E, Di Bernardo A, Giorio C, Marton D, Tapparo A, Girolami V (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull Insect 64:118–125
Google Scholar
Mason R, Tennekes HA, Sanchez-Bayo F, Jepsen PU (2013) Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol 1:3–12
Google Scholar
Maus C, Nauen R (2010) Response to the publication: Tennekes H.A. The significance of the Druckey-Kϋpfmϋller equation for risk assessment—the toxicity of neonicotinoid insecticides is reinforced by exposure time. Toxicology 280:176–177. doi:10.1016/j.tox.2010.11.014
Google Scholar
Maxim L, van der Sluijs JP (2007) Uncertainty: cause or effect of stakeholders’ debates? Analysis of a case study: the risk for honeybees of the insecticide Gaucho®. Sci Total Environ 376:1–17
CAS
Google Scholar
Maxim L, van der Sluijs JP (2013) Seed–dressing systemic insecticides and honeybees, chapter 16. In: European Environment Agency (ed.) Late lessons from early warnings: science, precaution, innovation. European Environment Agency (EEA) report 1/2013, Copenhagen. p. 401–438
Mayer DF, Lunden JD (1997) Effects of imidacloprid insecticide on three bee pollinators. Hortic Sci 29:93–97
Google Scholar
McKern JA, Johnson DT, Lewis BA (2007) Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae). J Econ Entomol 100:398–404
Google Scholar
Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C (2003) Effects of imidacloprid administered in sublethal doses on honey bee behaviour. Laboratory tests. Bull Insect 56:59–62
Google Scholar
Medrzycki P, Sgolastra F, Bogo G, Tosi S, Venturi S (2011) Influence of some experimental conditions on the results of laboratory toxicological tests on honeybees. XI International Symposium “Hazards of pesticides to bees” Wageningen, The Netherlands, November 2–4
Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215
CAS
Google Scholar
Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32:555–563
CAS
Google Scholar
Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51:487–492
Google Scholar
Mostert MA, Schoeman AS, van der Merwe M (2000) The toxicity of five insecticides to earthworms of the Pheretima group, using an artificial soil test. Pest Manag Sci 56:1093–1097
CAS
Google Scholar
Mostert MA, Schoeman AS, van der Merwe M (2002) The relative toxicities of insecticides to earthworms of the Pheretima group (Oligochaeta). Pest Manag Sci 58:446–450
CAS
Google Scholar
Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci 64:881–890
CAS
Google Scholar
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754
Google Scholar
Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586
CAS
Google Scholar
Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Physiol 76:55–69
CAS
Google Scholar
Neumann P, Carreck NL (2010) Honey bee colony loss. J Apic Res 49:1–6, special issue
Google Scholar
Nguyen BK et al (2009) Does imidacloprid seed-treated maize have an impact on honey bee mortality? J Econ Entomol 102:616–623
CAS
Google Scholar
Nielsen SA, Brodsgaard CJ, Hansen H (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Altern Lab Anim 28:437–443
Google Scholar
Ninsin KD (2004a) Acetamiprid resistance and cross-resistance in the diamondback moth, Plutella xylostella. Pest Manag Sci 60:839–841
CAS
Google Scholar
Ninsin KD (2004b) Selection for resistance to acetamiprid and various other insecticides in the diamondback moth, Plutella xylostella (L.) (Lep., Plutellidae). J Appl Entomol 128:445–451
CAS
Google Scholar
Ninsin KD, Miyata T (2003) Monitoring acetamiprid resistance in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Appl Entomol Zool 38:517–521
Google Scholar
Ninsin KD, Tanaka T (2005) Synergism and stability of acetamiprid resistance in a laboratory colony of Plutelia xylostella. Pest Manag Sci 61:723–727
CAS
Google Scholar
Ninsin KD, Mo JC, Miyata T (2000) Decreased susceptibilities of four field populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), to acetamiprid. Appl Entomol Zool 35:591–595
Google Scholar
Nyman AM, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater Amphipod Gammarus pulex by interfering with feeding behavior. PLoS One 8:e62472
CAS
Google Scholar
Oldroyd PB (2007) What’s killing American honey bees? PLoS Biol 5:e168
Google Scholar
Oliveira RA, Roat TC, Carvalho SM, Malaspina O (2013) Side-effects of thiamethoxam on the brain and midgut of the Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Environ Toxicol 28 doi: 10.1002/tox.21842
Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45:784–792
Google Scholar
Osterberg JS, Darnell KM, Blickley TM, Romano JA, Rittschof D (2012) Acute toxicity and sub-lethal effects of common pesticides in post-larval and juvenile blue crabs, Callinectes sapidus. J Exp Mar Biol Ecol 424–425:5–14
Google Scholar
Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81
CAS
Google Scholar
Paradis D, Bérail G, Bonmatin JM, Belzunces LP (2013) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 406:621–633
Google Scholar
Peck DC (2009) Comparative impacts of white grub (Coleoptera: Scarabaeidae) control products on the abundance of non-target soil-active arthropods in turfgrass. Pedobiologia 52:287–299
CAS
Google Scholar
Peck DC, Olmstead D (2010) Neonicotinoid insecticides disrupt predation on the eggs of turf-infesting scarab beetles. Bull Entomol Res 100:689–700
CAS
Google Scholar
Pedibhotla VK, Hall FR, Holmsen J (1999) Deposit characteristics and toxicity of fipronil formulations for tobacco budworm (Lepidoptera: Noctuidae) control on cotton. Crop Prot 18:493–499
CAS
Google Scholar
Pestana JLT, Alexander AC, Culp JM, Baird DJ, Cessna AJ, Soares A (2009) Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environ Pollut 157:2328–2334
CAS
Google Scholar
Pettis JS, van Engelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158
CAS
Google Scholar
Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I (2013) A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One 8:e77193
CAS
Google Scholar
Pochi D, Biocca M, Fanigliulo R, Pulcini P, Conte E (2012) Potential exposure of bees, Apis mellifera L., to particulate matter and pesticides derived from seed dressing during maize sowing. Bull Environ Contam Toxicol 89:354–61
CAS
Google Scholar
Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. J Econ Entomol 100:1053–1061
CAS
Google Scholar
Prabhaker N, Castle SJ, Naranjo SE, Toscano NC, Morse JG (2011) Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. J Econ Entomol 104:773–781
CAS
Google Scholar
Rahmani S, Bandani AR, Sabahi Q (2013) Effects of thiamethoxam in sublethal concentrations, on life expectancy (ex) and some other biological characteristics of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Int Res J App Basic Sci 4:556–560
Google Scholar
Ramasubramanian T (2013) Persistence and dissipation kinetics of clothianidin in the soil of tropical sugarcane ecosystem. Water Air Soil Pollut 224:1468
Google Scholar
Ramirez-Romero R, Chaufaux J, Pham-Delegue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611
CAS
Google Scholar
Rasmussen JJ, McKnight US, Loinaz MC, Thomsen NI, Olsson ME, Bjerg PL, Binning PJ, Kronvang B (2013) A catchment scale evaluation of multiple stressor effects in headwater streams. Sci Total Environ 442:420–31
CAS
Google Scholar
Reinhard J, Srinivasan MV, Zhang SW (2004) Scent-triggered navigation in honeybees. Nature 427:411–411
CAS
Google Scholar
Reyes M, Franck P, Charmillot PJ, Ioriatti C, Olivares J et al (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the Codling moth, Cydia pomonella. Pest Manag Sci 63:890–902
CAS
Google Scholar
Rhainds M, Sadof C (2009) Control of bagworms (Lepidoptera: Psychidae) using contact and soil-applied systemic insecticides. J Econ Entomol 102:1164–1169
CAS
Google Scholar
Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, Régent-Kloeckner M, David JP, Reynaud S (2013) Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol 126:326–337. doi:10.1016/j.aquatox.2012.09.010
CAS
Google Scholar
Richarz N, Neumann D, Wipking W (1989) Untersuchungen zur Ökologie des Apollofalters (Parnassius apollo vinningensis Stichel 1899, Lepidoptera, Papilionidae) im Weinbaugebiet der unteren Mosel. Mitt der Assoc Rheinisch-Westfälischer Lepidopterologen 5:108–259
Google Scholar
Rodrick GB (2008) Effect of temperature, salinity, and pesticides on oyster hemocyte activity. Florida Water Resour J 86:4–14. doi:10.2175/SJWP(2008)1
Google Scholar
Rogers MA, Krischik VA, Martin LA (2007) Effect of soil application of imidacloprid on survival of adult green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), used for biological control in greenhouse. Biol Control 42:172–177
CAS
Google Scholar
Rondeau G, Sanchez-Bayo F, Tennekes HA, Decourtye A, Ramirez-Romero R, Desneux N (2014) Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Nat Sc Rep 4:5566. doi:10.1038/srep05566
Google Scholar
Rundlöf M, Bengtsson J, Smith HG (2008) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45:813–820
Google Scholar
Rust MK, Reierson DA, Klotz JH (2004) Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling Argentine ants (Hymenoptera: Formicidae). J Econ Entomol 97:1017–1024
CAS
Google Scholar
Sánchez-Bayo F (2006) Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ Pollut 139:385–420
Google Scholar
Sánchez-Bayo F (2009) From simple toxicological models to prediction of toxic effects in time. Ecotoxicology 18:343–354
Google Scholar
Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482
Google Scholar
Sanchez-Bayo F, Kouchi G (2012) Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 21:667–680. doi:10.1007/s10646-011-0823-x
CAS
Google Scholar
Saour G (2008) Effect of thiacloprid against the potato tuber moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). J Pest Sci 81:3–8
Google Scholar
Sardo AM, Soares AMVM (2010) Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic Oligochaete Lumbriculus variegatus. Arch Environ Contam Toxicol 58:648–656
CAS
Google Scholar
Sarkar MA, Roy S, Kole RK, Chowdhury A (2001) Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci 57:598–602
CAS
Google Scholar
Sayyed AH, Crickmore N (2007) Selection of a field population of diamondback moth (Lepidoptera: Plutellidae) with acetamiprid maintains, but does not increase, cross-resistance to pyrethroids. J Econ Entomol 100:932–938
CAS
Google Scholar
Sayyed AH, Wright DJ (2004) Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J Econ Entomol 97:2043–2050
CAS
Google Scholar
Schäfer RB, vd Ohe P, Rasmussen J, Kefford B, Beketov M, Schulz R, Liess M (2012) Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environ Sci Tech 46:5134–5142
Google Scholar
Schmidt A (1997) Zur aktuellen situation des mosel-apollofalters parnassius apollo vinningensis Stichel, 1899 (Lep., Papilionidae). Melanargia 9:38–47
Google Scholar
Schmuck R (2004) Effects of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch Environ Contam Toxicol 47:471–478
CAS
Google Scholar
Schmuck R, Schoning R, Stork A, Schramel O (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci 57:225–238
CAS
Google Scholar
Schmuck R, Stadler T, Schmidt HW (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag Sci 59:279–286
CAS
Google Scholar
Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7:e30023
CAS
Google Scholar
Scholer J, Krischik V (2014) Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One 9:e91573
Google Scholar
Scott-Dupree CD, Conroy L, Harris CR (2009) Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 102:177–182
CAS
Google Scholar
Seagraves MP, Lundgren JG (2012) Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132
Google Scholar
Sergio M (2013) GMO and pesticide experiments in Hawaii: the poisoning of paradise. Huffington Post. http://www.huffingtonpost.com/maggie-sergio/gmo-pesticide-experiments_b_3513496.html
Setamou M, Rodriguez D, Saldana R, Schwarzlose G, Palrang D et al (2010) Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. J Econ Entomol 103:1711–1719
CAS
Google Scholar
Sgolastra F, Renzi T, Draghetti S, Medrzycki P, Lodesani M, Maini S, Pottini C (2012) Effects of neonicotinoid dust from maize seed-dressing on honey bees. Bullf Insect 65:273–280
Google Scholar
Sheehan C, Kirwan L, Connolly J, Bolger T (2008) The effects of earthworm functional diversity on microbial biomass and the microbial community level physiological profile of soils. Eur J Soil Biol 44:65–70
Google Scholar
Shi ZH, Guo SJ, Lin WC, Liu SS (2004) Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Pest Manag Sci 60:1213–1219
CAS
Google Scholar
Siegfried BD, Spencer T, Marcon PCRG (1999) Susceptibility of European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) neonate larvae to fipronil. J Agric Urban Entomol 16:273–278
Google Scholar
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin J-M, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2014) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res (this issue)
Sinha SN, Lakhani KH, Davis BNK (1990) Studies on the toxicity of insecticidal drift to the first instar larvae of the large white butterfly Pieris brassicae (Lepidoptera: Pieridae). Ann Appl Biol 116:27–41
CAS
Google Scholar
Smith SF, Krischick VA (1999) Effects of systemic imidacloprid on Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 28:1189–1195
CAS
Google Scholar
Smith JF, Catchot AL, Musser FR, Gore J (2013) Effects of aldicarb and neonicotinoid seed treatments on twospotted spider mite on cotton. J Econ Entomol 106:807–815
CAS
Google Scholar
Smodis Skerl MI, Velikonja Bolta S, Basa Cesnik H, Gregorc A (2009) Residues of pesticides in honeybee (Apis mellifera carnica) bee bread and in pollen loads from treated apple orchards. Bull Environ Contam Toxicol 83:374–7
CAS
Google Scholar
Song MY, Brown JJ (1998) Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotoxicol Environ Saf 41:195–202
CAS
Google Scholar
Song MY, Stark JD, Brown JJ (1997) Comparative toxicity of four insecticides, including imidacloprid and tebufenozide, to four aquatic arthropods. Environ Toxicol Chem 16:2494–2500
CAS
Google Scholar
Stapel JO, Cortesero AM, Lewis WJ (2000) Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol Control 17:243–249
CAS
Google Scholar
Stara J, Kocourek F (2007) Insecticidal resistance and cross-resistance in populations of Cydia pomonella (Lepidoptera: Tortricidae) in central Europe. J Econ Entomol 100:1587–95
CAS
Google Scholar
Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519
CAS
Google Scholar
Stark JD, Jepson PC, Mayer DF (1995) Limitations to use of topical toxicity data for predictions of pesticide side effects in the field. J Econ Entomol 88:1081–1088
CAS
Google Scholar
Starner K, Goh KS (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol, 1–6
Stokstad E (2007) The case of the empty hives. Science 316:970–972
CAS
Google Scholar
Stoughton SJ, Liber K, Culp J, Cessna A (2008) Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54:662–673
CAS
Google Scholar
Stygar D, Michalczyk K, Dolezych B, Nakonieczny M, Migula P et al (2013) Digestive enzymes activity in subsequent generations of Cameraria ohridella larvae harvested from horse chestnut trees after treatment with imidacloprid. Pestic Biochem Physiol 105:5–12
CAS
Google Scholar
Suchail S, Guez D, Belzunces LP (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 19:1901–1905
CAS
Google Scholar
Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20:2482–2486
CAS
Google Scholar
Suchail S, De Sousa G, Rahmani R, Belzunces LP (2004a) In vivo distribution and metabolisation of [14C]-imidacloprid in different compartments of Apis mellifera L. Pest Manag Sci 60:1056–1062
CAS
Google Scholar
Suchail S, Debrauwer L, Belzunces LP (2004b) Metabolism of imidacloprid in Apis mellifera. Pest Manag Sci 60:291–296
CAS
Google Scholar
Symington CA (2003) Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Crop Prot 22:513–519
CAS
Google Scholar
Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ (2011) Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PLoS One 6:e20018
CAS
Google Scholar
Szczepaniec A, Raupp MJ, Parker RD, Kerns D, Eubanks MD (2013) Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLoS One 8:e62620
CAS
Google Scholar
Tapparo A, Marton D, Giorio C, Zanella A, Solda’ L, Marzaro M, Vivan L, Girolami V (2012) Assessment of the environmental exposure of honeybees to the particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ Sci Tech 46:2592–2599
CAS
Google Scholar
Tarmann G (2009) Die Vinschger Trockenrasen - Ein Zustandsbericht auf basis der bioindikatoren Tagfalter und widderchen (Lepidoptera: Rhopalocera, Zygaenidae). Sci Yearb Tyrolean State Mus 2:307–350
Google Scholar
Tasei JN, Lerin J, Ripault G (2000) Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag Sci 56:784–788
CAS
Google Scholar
Tasei JN, Ripault G, Rivault E (2001) Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) when applied to sunflower. J Econ Entomol 94:623–627
CAS
Google Scholar
Taverner PD, Sutton C, Cunningham NM, Dyson C, Lucas N et al (2011) Efficacy of several insecticides alone and with horticultural mineral oils on light brown apple moth (Lepidoptera: Tortricidae) eggs. J Econ Entomol 104:220–224
CAS
Google Scholar
Taverner PD, Sutton C, Cunningham NM, Myers SW (2012) The potential of mineral oils alone and with reduced rates of insecticides for the control of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), on nursery plants. Crop Prot 42:83–87
CAS
Google Scholar
Teeters BS, Johnson RM, Ellis MD, Siegfried BD (2012) Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem 31:1349–1354
CAS
Google Scholar
Tennekes HA (2010) The significance of the Druckrey-Küpfmüller equation for risk assessment—the toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time. Toxicology 276:1–4
CAS
Google Scholar
Tennekes HA (2011) The significance of the Druckrey-Küpfmüller equation for risk assessment—the toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time: responding to a letter to the editor by Drs. C. Maus and R. Nauen of Bayer CropScience AG. Toxicology 280:173–175
CAS
Google Scholar
Tennekes HA, Sánchez-Bayo F (2012) Time-dependent toxicity of neonicotinoids and other toxicants: implications for a new approach to risk assessment. J Environ Anal Toxicol S4:001. doi:10.4172/2161-0525.S4-001
Google Scholar
Tennekes HA, Sánchez-Bayo F (2013) The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 309:39–51
CAS
Google Scholar
Thany SH, Gauthier M (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039:216–219
CAS
Google Scholar
Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262
CAS
Google Scholar
Thompson HM, Maus C (2007) The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag Sci 63:1058–1061
CAS
Google Scholar
Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406
Google Scholar
Tomizawa M, Maltby D, Talley TT, Durkin KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE (2008) Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proc Natl Acad Sci U S A 105:1728–1732
CAS
Google Scholar
Tu C, Wang Y, Duan W, Hertl P, Tradway L, Brandenburg R, Lee D, Snell M, Hu S (2011) Effects of fungicides and insecticides on feeding behavior and community dynamics of earthworms: implications for casting control in turfgrass systems. Appl Soil Ecol 47:31–36
Google Scholar
Valdovinos-Núñez J, Quezada-Euán JG, Ancona-Xiu P, Moo-Valle H, Carmona A, Sanchez ER (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742
Google Scholar
Van den Brink PJ, Roelsma J, van Nes EH, Scheffer M, Brock TCM (2002) PERPEST model: a case-based reasoning approach to predict ecological risks of pesticides. Environ Toxicol Chem 21:2500–2506
Google Scholar
Van der Sluijs JP, Simon-Delso S, Goulson D, Maxim L, Bonmatin JM, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305
Google Scholar
Van der Zee R, Pisa L, Andonov S, Brodschneider R, Charriere JD et al (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J Apic Res 51:91–114. doi:10.3896/ibra.1.51.1.12
Google Scholar
Van Dijk TC, van Staalduinen MA, van der Sluijs JP (2013) Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 8:e62374. doi:10.1371/journal.pone.0062374
Google Scholar
Van Engelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:80–95
Google Scholar
Vandame R, Meled M, Colin ME, Belzunces LP (1995) Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environ Toxicol Chem 14:855–860
CAS
Google Scholar
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Vigues B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. doi:10.1371/journal.pone.0021550
CAS
Google Scholar
Vijver MG, van den Brink PJ (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLoS One 9:e89837
Google Scholar
Villanueva-Jimenez JA, Hoy MA (1998) Toxicity of pesticides to the citrus leafminer and its parasitoid Ageniaspis citricola evaluated to assess their suitability for an IPM program in citrus nurseries. Biocontrol 43:357–388
CAS
Google Scholar
Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007) Miniature excitatory synaptic ion currents in the earthworm Lumbricus terrestris body wall muscles. Physiol Res 56:655–658
CAS
Google Scholar
Voudouris CC, Sauphanor B, Franck P, Reyes M, Mamuris Z et al (2011) Insecticide resistance status of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) from Greece. Pestic Biochem Physiol 100:229–238
CAS
Google Scholar
Wang M, Grimm V (2010) Population models in pesticide risk assessment: lessons from assessing population-level effects, recovery, and alternative exposure scenarios from modeling a small mammal. Environ Toxicol Chem 29:1292–1300
CAS
Google Scholar
Wang AH, Wu JC, Yu YS, Liu JL, Yue JF et al (2005) Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae). J Econ Entomol 98:1144–1149
CAS
Google Scholar
Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012a) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128
CAS
Google Scholar
Wang Y, Wu S, Chen L, Wu C, Yu R, Wang Q, Zhao X (2012b) Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 88:484–491
CAS
Google Scholar
Ward GS (1990) NTN 33893 technical: acute toxicity to the mysid, Mysidopsis bahia, under flow-through test conditions. Toxicon Environmental Sciences, Jupiter, Florida (performing laboratory). Mobay Corporation, Kansas City, Missouri (submitting laboratory). Mobay Report No. 100355. 46 pp
Ward GS 1991. NTN 33893 technical: chronic toxicity to the mysid Mysidopsis bahia under flow-through conditions. Toxicon Environmental Sciences, Jupiter, FL. 87 pp. Miles Report No. 101347
Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750
Google Scholar
Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352
CAS
Google Scholar
Wise JC, Jenkins PE, Vander Poppen R, Isaacs R (2010) Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in highbush blueberry. J Econ Entomol 103:1720–1728
Google Scholar
Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720
CAS
Google Scholar
Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol 109:326–329
CAS
Google Scholar
Yamada T, Yamada K, Wada N (2012) Influence of dinotefuran and clothianidin on a bee colony. Japan J Clin Ecol 21:10–23
Google Scholar
Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748
CAS
Google Scholar
Yang EC, Chang HC, Wu WY, Chen YW (2012) Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7:e49472
CAS
Google Scholar
Youn YN, Seo MJ, Shin JG, Jang C, Yu YM (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biol Control 28:164–170
CAS
Google Scholar
Yu YS, Xue S, Wu JC, Wang F, Liu JL et al (2007a) Distribution of imidacloprid residues in different parts of rice plants and its effect on larvae and adult females of Chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 100:375–380
Google Scholar
Yu YS, Xue S, Wu JC, Wang F, Yang GQ (2007b) Changes in levels of juvenile hormone and molting hormone in larvae and adult females of Chilo suppressalis (Lepidoptera: Pyralidae) after imidacloprid applications to rice. J Econ Entomol 100:1188–1193
CAS
Google Scholar
Yue B, Wilde GE, Arthur F (2003) Evaluation of thiamethoxam and imidacloprid as seed treatments to control European corn borer and Indianmeal moth (Lepidoptera: Pyralidae) larvae. J Econ Entomol 96:503–509
CAS
Google Scholar
Zang Y, Zhong Y, Luo Y, Kong ZM (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108:271–278
CAS
Google Scholar
Zeng CX, Wang JJ (2010) Influence of exposure to imidacloprid on survivorship, reproduction and vitellin content of the carmine spider mite, Tetranychus cinnabarinus. J Insect Sci 10:20
CAS
Google Scholar
Zhou LJ, Huang JG, Xu HH (2011) Monitoring resistance of field populations of diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) to five insecticides in South China: a ten-year case study. Crop Prot 30:272–278
CAS
Google Scholar