Skip to main content

Advertisement

Log in

Bathymetric variation of epiphytic assemblages on Posidonia oceanica (L.) Delile leaves in relation to anthropogenic disturbance in the southeastern Mediterranean

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A survey of the epiphytic leaves of Posidonia oceanica was conducted along a depth transect at both the control station Attaya in the Kerkennah Islands and the disturbed Mahres station on the Sfax coast (Tunisia). Samples were collected by scuba divers at depths of 5, 10, 15, and 20 m in July 2008. We evaluated whether the pattern of spatial variability of the macroepiphyte assemblages of leaves of Posidonia oceanica differed in relation to anthropogenic interference. The results indicate that the decrease in shoot density and leaf length according to depth was low at Mahres. The biomass of epiphytic leaves and the percentage cover of epiphytic assemblages decreased with depth for both stations and heavily at Mahres, this decline being related to anthropogenic disturbance. This study shows that the highest values of epifauna and epiflora were detected at the disturbed station Mahres. Macroalgae assemblages decreased with depth at both stations and were dominated by Rhodophyta, whereas the percentage cover of the epifauna leaf that decreases according to depth was dominated by Hydrozoa and Bryozoa. Changes in epiphyte assemblages, epiphytic biomass, percentage cover, and species richness in proportion to Heterokontophyta, Rhodophyta, Cyanobacteria, Hydrozoa, Porifera, and Tunicata between the two stations constitute promising tools for detecting environmental disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alcoverro T, Duarte CM, Romero J (1997) The influence of herbivores on Posidonia oceanica epiphytes. Aquat Bot 56:93–104

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland

    Google Scholar 

  • APAL (2001) Zone sensible Bordj El Hassar-Kerkennah. Rapport Définitif COMETE Engineering 105 pp

  • Armitage AR, Frankovich TA, Fourqurean JW (2006) Variable responses within epiphytic and benthic microalgal communities to nutrient enrichment. Hydrobiologia 569:423–435

    Article  CAS  Google Scholar 

  • Balata D, Nesti U, Piazzi L, Cinelli F (2007) Patterns of spatial variability of seagrass epiphytes in the north-west Mediterranean Sea. Mar Biol 151:2025–2035

    Article  Google Scholar 

  • Balata D, Piazzi L, Nesti U, Bulleri F, Bertocci I (2010) Effects of enhanced loads of nutrients on epiphytes on leaves and rhizomes of Posidonia oceanica. J Sea Res 63:173–179

    Article  CAS  Google Scholar 

  • Ballesteros E (1987) Estructura i dinamica del poblament algal de les fulles de Posidonia oceanica (L.) delile als herbeis de Tossa de Mar (girona). Butlletí de la Institució Catalana Història Natural 54:13–30

    Google Scholar 

  • Banni M, Dondero F, Jebali J, Guerbej H, Boussetta H, Viarengo A (2007) Assessment of heavy metal contamination using real-time PCR analysis of mussel metallothionein mt10 and mt20 expression: a validation along the Tunisian coast. Biomark 12:369–383

    Article  CAS  Google Scholar 

  • Bates WR (2005) Environmental factors affecting reproduction and development in ascidians and other protochordates. Can J Zool 83:51–61

    Article  Google Scholar 

  • Ben Brahim M, Hiroaki T, Hamza A (2007) Proceedings of the third Mediterranean symposium on marine vegetation, Marseille 300 pp

  • Ben Brahim M, Hamza A, Hannachi I, Rebai A, Jarboui O, Bouain A, Aleya L (2010) Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia. Mar Environ Res 70:411–421

    Article  CAS  Google Scholar 

  • Ben Brahim M, Hamza A, Ben Ismail S, Mabrouk L, Bouain A, Aleya L (2013) What factors drive seasonal variation of phytoplankton, protozoans and metazoans on leaves of Posidonia oceanica and in the water column along the coast of the Kerkennah Islands, Tunisia? Mar Pollut Bull 71:286–298

    Article  Google Scholar 

  • Ben Ismail S, Sammari C, Béranger K, Lellouch JM (2010) Atlas des données hydrologiques au large des côtes tunisiennes. 169 pp

  • Ben Ismail S, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the channel. Deep-Sea Res I 63:65–81

    Article  Google Scholar 

  • Borg JA, Attrill MJ, Rowden AA, Schembri PJ, Jones MB (2005) Architectural characteristics of two bed types of the seagrass Posidonia oceanica over different spatial scales. Estuar Coast Shelf Sci 62:667–678

    Article  Google Scholar 

  • Brahim M, Atoui A, Sammari C, Aleya L (2014) Surface sediment dynamics along the eastern coast of Djerba Island (Gabes Gulf, Tunisia). J Afr Earth Sci 92:45–54

    Article  Google Scholar 

  • Casola E, Scardi M, Mazzella L, Fresi E (1987) Structure of the epiphytic community of Posidonia oceanica leaves in a shallow meadow. PSZN Mar Ecol 8:285–286

    Article  Google Scholar 

  • Chouba L, Mzoughi-Aguir N (2006) Les métaux traces (Cd, Pb, Hg) et les hydrocarbures totaux dans les sédiments superficiels de la frange côtière du Golfe de Gabes. Bulletins de l’Institut Océanographique et de Pêche de Salammbô 33:93–100

    Google Scholar 

  • Cifuentes M, Kamlah C, Thiel M, Lenz M, Wahl M (2007) Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J Exp Mar Biol Ecol 352:280–294

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Cosentino A, Giacobbe S (2008) Distribution and functional response of sublittoral soft bottom assemblages to sedimentary constraints. Estuar Coast Shelf Sci 79:263–276

    Article  Google Scholar 

  • den Hartog C (1970) The seagrasses of the world. North Holland Publishing Company, Amsterdam, London, 275 pp

    Google Scholar 

  • Etienne L, Beltrando G (2013) Daoud A (2013) Human influences on environmental changes in the Kerkennah Archipelago (Tunisia) since the 60’s, 3rd international geography symposium GEOMED.. ISBN 978-605-62253-8-3

    Google Scholar 

  • Fathallah S, Medhioub MN, Medhioub A, Kraiem MM (2011) Ruditapes decussatus embryo-larval toxicity bioassay for assessment of Tunisian coastal water contamination. J Environ Chem Ecotoxicol 3:277–285

    CAS  Google Scholar 

  • Ferrat L, Wyllie-Echeverria S, Rex GC, Pergent-Martini C, Pergent G, Zou J, Romeo M, Pasqualini V, Fernandez C (2012) Posidonia oceanica and Zostera marina as potential biomarkers of heavy metal contamination in coastal systems, ecological water quality—water treatment and reuse, Dr. Voudouris (Ed.) 676 pp

  • Gambi MC, Conti G, Bremec CS (1998) Polychaete distribution, diversity and seasonality related to seagrass cover shallow soft bottoms of the Tyrrhenian Sea (Italy). Sci Mar 62:1–17

    Article  Google Scholar 

  • Gera A, Pages JS, Romero J, Alcoverro T (2013) Combined effects of fragmentation and herbivory on Posidonia oceanica seagrass ecosystems. J Ecol 101:1053–1061

    Article  Google Scholar 

  • Ghannem N, Azri C, Serbaji MM, Yaich C (2011) Spatial distribution of heavy metals in the coastal zone of “Sfax–Kerkennah” plateau, Tunisia. Environ Prog Sustain Energy 30:221–233

    Article  Google Scholar 

  • Giovannetti E, Montefalcone M, Morri C, Bianchi CN, Albertelli G (2010) Early warning response of Posidonia oceanica epiphyte community to environmental alterations (Ligurian Sea, NW Mediterranean). Mar Pollut Bull 60:1031–1039

    Article  CAS  Google Scholar 

  • Guidetti P (2001) Detecting environmental impacts on the Mediterranean seagrass Posidonia oceanica (L.) Delile: the use of reconstructive methods in combination with “beyond BACI” designs. J Exp Mar Biol Ecol 260:27–39

    Article  Google Scholar 

  • Hattour A, Ben Mustapha K, El Abed A, Chaouch M (1998) L’écosystème du golfe de Gabès; dégradation de son couvert végétal et de sa pêcherie benthique. Bulletins de l’Institut Océanographique et de Pêche de Salammbô 25:5–40

    Google Scholar 

  • Hattour MJ, Sammari C, Ben Nassrallah S (2010) Hydrodynamique du golfe de Gabès déduite à partir des observations de courants et de niveaux. Revue Paralia 12:1–3

    Google Scholar 

  • Hauxwell J, Cebrián J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Mar Ecol Prog Ser 247:59–73

    Article  CAS  Google Scholar 

  • Houda B, Dorra G, Chafai A, Emna A, Khaled M (2011) Impact of a mixed “industrial and domestic” wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. Int J Environ Res 5:691–704

    CAS  Google Scholar 

  • Hughes RG, Garcia-Rubies A, Gili JM (1991) The growth and degeneration of the hydroid Sertularia perpusilla, an obligate epiphyte of leaves of the seagrass Posidonia oceanica. Hydrobiologia 216:211–214

    Article  Google Scholar 

  • Jebali J, Banni M, Alves de Almeida E, Boussetta H (2007) Oxidative DNA damage levels clams Ruditapes decussatus as pollution biomarkers of Tunisian marine environment. Environ Monit Assess 124:195–200

    Article  CAS  Google Scholar 

  • Kuffner IB, Paul VJ (2001) Effects of nitrate, phosphate and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam. Mar Ecol Prog Ser 222:63–72

    Article  CAS  Google Scholar 

  • Lambert G (2005) Ecology and natural history of the protochordates. Can J Zool 83:34–50

    Article  Google Scholar 

  • Lemmens JWTJ, Clapin G, Lavery P, Cary J (1996) Filtering capacity of seagrass meadows and other habitats of Cockburn Sound, Western Australia. Mar Ecol Prog Ser 143:187–200

    Article  Google Scholar 

  • Lepoint G, Havelange S, Gobert S, Bouquegneau JM (1999) Fauna vs flora contribution to the leaf epiphytes biomass in a Posidonia oceanica seagrass bed (Revellata Bay, Corsica). Hydrobiologia 394:63–67

    Article  Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136:513–518

    Article  CAS  Google Scholar 

  • Libes M (1986) Productivity-irradiance relationship of Posidonia oceanica and its epiphytes. Aquat Bot 26:285–306

    Article  Google Scholar 

  • Littler MM, Littler DS (1999) Blade abandonment/proliferation: a novel mechanism for rapid epiphyte control in marine macrophytes. Ecology 80:1736–1746

    Article  Google Scholar 

  • Martínez-Crego B, Prado P, Alcoverro T, Romero J (2010) Composition of epiphytic leaf community of Posidonia oceanica as a tool for environmental biomonitoring. Estuar Coast Shelf Sci 71:286–298

    Google Scholar 

  • Mascaro O, Valdemarsen T, Holmer M, Perez M, Romero J (2009) Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. J Exp Mar Biol Ecol 373:26–34

    Article  Google Scholar 

  • Mayot N, Boudouresque CF, Charbonnel E (2006) Change over time of shoot density of the Mediterranean seagrass Posidonia oceanica at its depth limit. Biologia Marina Mediterranea 13:250–254

    Google Scholar 

  • Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant–animal trophic relationships in the Posidonia oceanica ecosystem of Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the marine benthos. Clarendon Press, Oxford, Systematic association special volume, pp 165–187

  • Mccarthy JF, Shugart LR (1990) Biomarkers of environmental contamination. Lewis Publishers, Florida, 457 p

    Google Scholar 

  • Meinesz A, Lefevre JR, Astier JM (1991) Impact of coastal development on the infralittoral zone along the southern Mediterranean shore of continental France. Mar Pollut Bull 23:343–347

    Article  Google Scholar 

  • Missaoui H, Jabeur C, Gobert B, Jarboui O, El Abed A (2000) Analyse typologique de la flottille chalutière du Golfe de Gabès (Sud Est de Tunisie). Bulletin de l’Institut Natational des Sciences et Technologies de la Mer de Salammbô 27:15–26

    Google Scholar 

  • Moncreiff CA, Sullivan MJ, Daehnick AE (1992) Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton. Mar Ecol Prog Ser 87:161–171

    Article  Google Scholar 

  • Nesti U, Piazzi L, Balata D (2008) Variability in the structure of epiphytic assemblages of the Mediterranean seagrass Posidonia oceanica in relation to depth. Mar Ecol. doi:10.1111/j.1439-0485.2008.00275.x

    Google Scholar 

  • Oueslati A (1994) Les côtes de la Tunisie. Recherches sur leur évolution au Quaternaire

  • Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF (1994) Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106:139–146

    Article  Google Scholar 

  • Pergent G, Pergent-Martini C, Boudouresque CF (1995) Utilisation de l'herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée: état des connaissances. Mésogée 54:3–27

    Google Scholar 

  • Pergent-Martini C, Leoni V, Pasqualini V, Ardizzone GD, Balestri E, Bedini R, Belluscio A, Belsher T, Borg J, Boudouresque CF, Boumaza S, Bouquegneau JM, Buia MC, Calvo S, Cebrian J, Charbonnel E, Cinelli F, Cossu A, DiMaida G, Dural B, Francour P, Gobert S, Lepoint G, Meinesz A, Molenaar H, Mansour HM, Panayotidis P, Peirano A, Pergent G, Piazzi L, Pirrotta M, Relini G, Romero J, Sanchez-Lizaso JL, Semroud R, Shembri P, Shili A, Tomasello A, Velimirov B (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indic 5:213–230

    Article  Google Scholar 

  • Perry CT, Beavington-Penney SJ (2005) Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique. Sediment Geol 174:161–176

    Article  CAS  Google Scholar 

  • Rabaoui L, Balti R, El Zrelli R, Tlig-Zouari S (2013) Assessment of heavy metal pollution in the gulf of Gabes (Tunisia) using four mollusc species. Mediterranean Marine Science 15:45–58

    Google Scholar 

  • Romero J (1988) Epífitos de las hojas de Posidonia oceanica: variaciones estacionales y batimétricas de biomasa en la pradera de las islas Medes (Girona). Acta Oecol 9:19–25

    Google Scholar 

  • Smaoui-Damak W, Hamza-Chaffaia A, Bebianno MJ, Amiard JC (2004) Variation of metallothioneins in gills of the clam Ruditapes decussatus from the Gulf of Gabes (Tunisia). Comparative Biochem and Physiol Part C 139:181–188

    CAS  Google Scholar 

  • SMAPIII Projet (2006–2008) Stratégies de gestion intégrée des zones côtières pour les régions du Kroumirie et Mogods et les municipalités de Sfax. Ministère de l’intérieur et du développement local, Tunis, 146p

    Google Scholar 

  • Tsirika A, Skoufas G, Haritonidis S (2007) Seasonal and bathymetric variations of epiphytic macroflora on Posidonia oceanica (L.) Delile leaves in the National Marine Park of Zakynthos (Greece). Mar Ecol 28:146–153

    Article  Google Scholar 

  • Underwood AJ (1992) Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. J Exp Mar Biol Ecol 161:145–178

    Article  Google Scholar 

  • Valdivia N, Heidemann A, Thiel M, Molis M, Wahl M (2005) Effects of disturbance on the diversity of hard-bottom macrobenthic communities on the coast of Chile. Mar Ecol Prog Ser 299:45–54

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes RA, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Article  CAS  Google Scholar 

  • Wear GJ, Sullivan MJ, Moore AD, Millie DF (1999) Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar Ecol Prog Ser 179:201–213

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the JICA (Japan International Cooperation Agency) and ESREB project (Étude des Stocks et des Ressources Exploitables des Bivalves) in Tunisia. It was conducted as part of a collaborative project between the Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 and the INSTM (Institut National des Sciences et Technologies de la Mer) and the Faculty of Sciences of Sfax (Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, M.B., Mabrouk, L., Hamza, A. et al. Bathymetric variation of epiphytic assemblages on Posidonia oceanica (L.) Delile leaves in relation to anthropogenic disturbance in the southeastern Mediterranean. Environ Sci Pollut Res 21, 13588–13601 (2014). https://doi.org/10.1007/s11356-014-3315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3315-8

Keywords

Navigation