Skip to main content
Log in

Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauer K-H, Huette D, Lehmkuehler H-J, Schmauch H (1990) Recycling of iron and steelworks wastes using the Inmetco direct reduction process. Mpt Metall Plant Technol 13(4):7

    Google Scholar 

  • Bengtsson N, Castellote M (2010) Photocatalytic activity for NO degradation by construction materials: parametric study and multivariable correlations. J Adv Oxid Technol 13(3):341–349

    CAS  Google Scholar 

  • Bernal J, Dasgupta D, Mackay A (1957) Oriented transformations in iron oxides and hydroxides. Nature 180(4587):645–647

    Article  CAS  Google Scholar 

  • Cassar L (2004) Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull 29(05):328–331

    Article  CAS  Google Scholar 

  • Castellote M, Menendez E, Andrade C, Zuloaga P, Navarro M, Ordonez M (2004) Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories. Environ Sci Technol 38(10):2946–2952

    Article  CAS  Google Scholar 

  • Castellote M, Ordóñez M, Andrade C, Zuloaga P, Navarro M (2011) Electrochemical treatment to condition contaminated EAFD as addition to immobilisation mortar in low level waste concrete containers. Corros Eng Sci Technol 46(2):190–194

    Article  CAS  Google Scholar 

  • Chandrasekara Pillai K, Kwon TO, Moon IS (2009) Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: direct versus indirect ozonation reactions. Appl Catal B Environ 91(1–2):319–328. doi:10.1016/j.apcatb.2009.05.040

    Article  CAS  Google Scholar 

  • Corredor J, Echeverría F (2007) Nanoparticled iron oxides synthesis. Sci et Tech 36

  • de Melo JVS, Trichês G (2012) Evaluation of the influence of environmental conditions on the efficiency of photocatalytic coatings in the degradation of nitrogen oxides (NOx). Build Environ 49:117–123

    Article  Google Scholar 

  • Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43(4):406–414

    Article  Google Scholar 

  • Funahashi T, Kaikake A (1998) Sugiura T Recent development of Waelz Kiln process for EAF dust treatment at Sumitomo Shisaka Works. In: EPD Congress, 1998. pp 487-496

  • Hilton R (1997) Method for manufacturing cement clinkers, especially Portland cement clinkers, using stabilized electric arc furnace dust as raw material. Patent US5853474

  • Hüsken G, Hunger M, Brouwers H (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44(12):2463–2474

    Article  Google Scholar 

  • Kubelka P, Munk F (1931) Tech Phys 12:593

    Google Scholar 

  • Liu C, Li H, Jie W, Zhang X, Yu D (2006) Preparation of ZnO cluster and rod-like whiskers through hydrothermal methods. Mater Lett 60(11):1394–1398

    Article  CAS  Google Scholar 

  • Ma X, Zhang H, Ji Y, Xu J, Yang D (2005) Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. Mater Lett 59(27):3393–3397

    Article  CAS  Google Scholar 

  • Mackay A (1960) Some aspects of the topochemistry of the iron oxides and hydroxides. In: 4th International symposium react solids, Amsterdam, pp 571-583

  • Mikhail S, Turcotte A, Aota J (1996) Thermoanalytical study of EAF dust and its vitrification product. Thermochim Acta 287(1):71–79

    Article  CAS  Google Scholar 

  • Mohamed E M Ali, Tarek A Gad-Allah, Mohamed I Badawy (2013). Heterogeneous Fenton process using steel industry wastes for methyl orange degradation. Applied Water Science 01/2013. doi:10.1007/s13201-013-0078-1

  • Morrison SR (1990) The chemical physics of surfaces, 2nd edn. Plenum, New York, 1990

    Book  Google Scholar 

  • Néstor G, Borja G (2003) The situation of EAF dust in Europe and the upgrading of the Waelz process. In: Global symposium on recycling, waste treatment and clean technology, Rewas, pp 1511-1520

  • Peruchon L, Puzenat E, Herrmann J, Guillard C (2009) Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors. Photochem Photobiol Sci 8(7):1040–1046

    Article  CAS  Google Scholar 

  • Pusateri J, Bounds C, Lherbier L (1988) Zinc recovery via the flame reactor process. JOM 40(8):31–35

    Article  CAS  Google Scholar 

  • Rosencher E, Pankove JI (1971). Optical processes in semiconductors

  • Ruot B, Plassais A, Olive F, Guillot L, Bonafous L (2009) TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol Energy 83(10):1794–1801

    Article  CAS  Google Scholar 

  • Sapiña M, Jimenez-Relinque E, Castellote M (2013) Controlling the levels of airborne pollen: can heterogeneous photocatalysis help? Environ Sci Technol 47:11711–11716

    Article  Google Scholar 

  • Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes. ChemSusChem 4(4):432–449

    Article  CAS  Google Scholar 

  • Soltani T, Entezari MH (2013) Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem Eng J 223:145–154

    Article  CAS  Google Scholar 

  • Strini A, Cassese S, Schiavi L (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl Catal B Environ 61(1):90–97

    Article  CAS  Google Scholar 

  • Sugrañez R, Cruz‐Yusta M, Mármol I, Martín F, Morales J, Sánchez L (2012) Use of industrial waste for the manufacturing of sustainable building materials. ChemSusChem 5(4):694–699

    Article  Google Scholar 

  • Sugrañez R, Cruz‐Yusta M, Mármol I, Morales J, Sánchez L (2013) Preparation of sustainable photocatalytic materials through the valorization of industrial wastes. ChemSusChem 6(12):2340–2347

    Article  Google Scholar 

  • Van Jaarsveld J, Van Deventer J, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: part I. Theory and applications. Miner Eng 10(7):659–669

    Article  Google Scholar 

  • Wang D, Duan Y, Luo Q, Li X, An J, Bao L, Shi L (2012) Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. J Mater Chem 22(11):4847–4854

    Article  CAS  Google Scholar 

  • Watanabe T, Takizawa T, Honda K (1977) Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J Phys Chem 81(19):1845–1851

    Article  CAS  Google Scholar 

  • Wen Y-Z, Tong S-P, Zheng K-F, Wang L-L, Lv J-Z, Lin J (2006) Removal of terephthalic acid in alkalized wastewater by ferric chloride. J Hazard Mater 138(1):169–172. doi:10.1016/j.jhazmat.2006.05.070

    Article  CAS  Google Scholar 

  • Xu Y (1997) Kinetics of redox transformation of aqueous sulfur species: the role of intermediate sulfur oxyanions and mineral surfaces. State University of New York at Stony Brook, New York

    Google Scholar 

  • Xu Y, Schoonen MA (1995) The stability of thiosulfate in the presence of pyrite in low-temperature aqueous solutions. Geochim Cosmochim Acta 59(22):4605–4622

    Article  CAS  Google Scholar 

  • Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556

    CAS  Google Scholar 

  • Xu Y, Schoonen MA, Strongin DR (1996) Thiosulfate oxidation: catalysis of synthetic sphalerite doped with transition metals. Geochim Cosmochim Acta 60(23):4701–4710

    Article  CAS  Google Scholar 

  • Xu F, Guo D, Han H, Wang H, Gao Z, Wu D, Jiang K (2012) Room-temperature synthesis of pompon-like ZnO hierarchical structures and their enhanced photocatalytic properties. Res Chem Intermed 38(7):1579–1589

    Article  CAS  Google Scholar 

  • Yu BS, Wang YR, Chang TC (2011) Hydrothermal treatment of electric arc furnace dust. J Hazard Mater 190(1–3):397–402. doi:10.1016/j.jhazmat.2011.03.056

    Article  CAS  Google Scholar 

  • Zunkel AD (1997) Electric arc furnace dust management: a review of technologies. Iron Steel Eng 74(3):33–38

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maria Grande Jara, of technical analysis and control from IETcc-CSIC, for her collaboration in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Castellote.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapiña, M., Jimenez-Relinque, E. & Castellote, M. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material. Environ Sci Pollut Res 21, 12091–12098 (2014). https://doi.org/10.1007/s11356-014-3167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3167-2

Keywords

Navigation