Skip to main content
Log in

Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications

  • Advanced Oxidation Technologies: Advances and Challenges in IberoAmerican Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The modification of titanate nanotubes (TiNT) with nitrogen (NTiNT) was accomplished through impregnation method. TiNT were synthesized via hydrothermal treatment of titania powders in NaOH solution at 130 °C for 48 h. The obtained samples were characterized by UV–Vis absorption spectroscopy, Brunauer–Emmett–Teller (BET) surface area, XRD, TEM, XPS, and TG analysis. Structure, morphology, composition, and visible light absorption property of nitrogen-modified TiO2 nanotubes are found to depend on the nitrogen content and not on the calcination temperature for the range used in this work. The photocatalytic activity of these nanotubes was investigated for the degradation of methylethylketone (MEK) and hydrogen sulfide (H2S) under ultraviolet and solar light radiation. MEK is very resistant to photocatalytic degradation with the prepared materials;, however, the results show that modification of the TiNT with nitrogen in a proportion of 1 to 1 (TiNT to urea weight ratio) and calcination at 400 °C lead to materials with high photocatalytic activity under ultraviolet radiation and moderate photocatalytic activity under solar radiation for degradation of H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberici RM, Canela MC, Eberlin MN, Jardim WF (2001) Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using TiO2/UV–VIS. Appl Catal B-Environ 30:389–397

    Article  CAS  Google Scholar 

  • Alonso-Tellez A, Robert D, Keller N, Keller V (2012) A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Appl Catal B-Environ 115–116:209–218

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–71

    Article  CAS  Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC (2005) Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence. J Phys Chem B 109:8565–8569

    Article  CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biot 77:102–116

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Canela MC, Alberici RM, Jardim WF (1998) Gas-phase destruction of H2S using TiO2/UV–VIS. J Photoch Photobio A 112:73–80

    Article  CAS  Google Scholar 

  • Canela MC, Alberici RM, Sofia RCR, Eberlin MN, Jardim WF (1999) Destruction of malodorous compounds using heterogeneous photocatalysis. Environ Sci Technol 33:2788–2792

    Article  CAS  Google Scholar 

  • Castle JE, Salvi AM (2001) Interpretation of the Shirley background in X-ray photoelectron spectroscopy analysis. J Vac Sci Technol A 19:1170–1175

    Article  CAS  Google Scholar 

  • Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    Article  CAS  Google Scholar 

  • Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982

    Article  CAS  Google Scholar 

  • Costa LL, Prado AGS (2009) TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. J Photoch Photobio A 201:45–49

    Article  CAS  Google Scholar 

  • Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J Phys Chem B 108:6004–6008

    Article  CAS  Google Scholar 

  • Dong L, Ma Y, Wang Y, Tian Y, Ye G, Jia X, Cao G (2009) Preparation and characterization of nitrogen-doped titania nanotubes. Mater Lett 63:1598–1600

    Article  CAS  Google Scholar 

  • Doniach S, Sunjic M (1970) Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C Solid State 3:285

    Article  CAS  Google Scholar 

  • Du GH, Chen Q, Che RC, Yuan ZY, Peng L-M (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79:3702–3704

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gau BC, Chen H, Zhang Y, Gross ML (2010) Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins. Anal Chem 82:7821–7827

    Article  CAS  Google Scholar 

  • Geng J, Yang D, Zhu J, Chen D, Jiang Z (2009) Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method. Mater Res Bull 44:146–150

    Article  CAS  Google Scholar 

  • Glowa G, Driver P, Wren JC (2000) Irradiation of MEK—II: a detailed kinetic model for the degradation of 2-butanone in aerated aqueous solutions under steady-state γ-radiolysis conditions. Radiat Phys Chem 58:49–68

    Article  CAS  Google Scholar 

  • Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V (2013) Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl Catal B-Environ 138–139:128–140

    Article  Google Scholar 

  • Henderson MA (2008) Ethyl radical ejection during photodecomposition of butanone on TiO2. Surf Sci 602:3188–3193

    Article  CAS  Google Scholar 

  • Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top Catal 34:49–65

    Article  CAS  Google Scholar 

  • Hidaka H, Shimura T, Ajisaka K, Horikoshi S, Zhao J, Serpone N (1997) Photoelectrochemical decomposition of amino acids on a TiO2/OTE particulate film electrode. J Photoch Photobio A 109:165–170

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Huang LH, Sun C, Liu YL (2007) Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl Surf Sci 253:7029–7035

    Article  CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders. J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  • Jacoby WA, Blake D, Noble RD, Koval CA (1995) Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. J Catal 157:87–96

    Article  CAS  Google Scholar 

  • Jing Z, Guo D, Wang W, Zhang S, Qi W, Ling B (2011) Comparative study of titania nanoparticles and nanotubes as antibacterial agents. Solid State Sci 13:1797–1803

    CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihar K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  • Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5:2322–2330

    Article  CAS  Google Scholar 

  • Kontos AG, Katsanaki A, Maggos T, Likodimos V, Ghicov A, Kim D, Kunze J, Vasilakos C, Schmuki P, Falaras P (2010) Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chem Phys Lett 490:58–62

    Article  CAS  Google Scholar 

  • Li H, Li G, Zhu J, Wan Y (2005) Preparation of an active SO4 2−/TiO2 photocatalyst for phenol degradation under supercritical conditions. J Mol Catal A-Chem 226:93–100

    Article  CAS  Google Scholar 

  • Li XZ, Li FB (2002) Surface characterization and photocatalytic reactivity of innovative Ti/TiO2 and Ti/Pt − TiO2 mesh photoelectrodes. J Appl Electrochem 32:203–210

    Article  CAS  Google Scholar 

  • Mikhail RS, Brunauer S, Bodor EE (1968) Investigations of a complete pore structure analysis: I. Analysis of micropores. J Colloid Interf Sci 26:45–53

    Article  CAS  Google Scholar 

  • Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  • Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B-Environ 99:448–460

    Article  CAS  Google Scholar 

  • Pétigny S, Mostéfa-Sba H, Domenichini B, Lesniewska E, Steinbrunn A, Bourgeois S (1998) Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces. Surf Sci 410:250–257

    Article  Google Scholar 

  • Piera E, Ayllón JA, Doménech X, Peral J (2002) TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catal Today 76:259–270

    Article  CAS  Google Scholar 

  • Portela R, Suárez S, Rasmussen SB, Arconada N, Castro Y, Durán A, Ávila P, Coronado JM, Sánchez B (2010) Photocatalytic-based strategies for H2S elimination. Catal Today 151:64–70

    Article  CAS  Google Scholar 

  • Razali MH, Mohd Noor A-F, Mohamed AR, Sreekantan S (2012) Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate. J Nanomater 2012:10

    Article  Google Scholar 

  • Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  • Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353

    Article  CAS  Google Scholar 

  • Sato S (1986) Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  CAS  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, McKenzie B, Xu H (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125:12384–12385

    Article  CAS  Google Scholar 

  • Tokudome H, Miyauchi M (2004) N-doped TiO2 nanotube with visible light activity. Chem Lett 33:1108–1109

    Article  CAS  Google Scholar 

  • Vincent G, Queffeulou A, Marquaire PM, Zahraa O (2007) Remediation of olfactory pollution by photocatalytic degradation process: Study of methyl ethyl ketone (MEK). J Photoch Photobio A 191:42–50

    Article  CAS  Google Scholar 

  • Vorontsov AV, Savinov EV, Davydov L, Smirniotis PG (2001) Photocatalytic destruction of gaseous diethyl sulfide over TiO2. Appl Catal B-Environ 32:11–24

  • Wang Z, Cai W, Hong X, Zhao X, Xu F, Cai C (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B-Environ 57:223–231

    Article  CAS  Google Scholar 

  • Wilks J (1971) Chapter 6—the third law of thermodynamics. In: Wilhelm J (Editor), Physical chemistry: an advanced treatise. Academic Press, pp. 437–488

  • Xiang Q, Yu J, Jaroniec M (2011a) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13:4853–4861

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Wang W, Jaroniec M (2011b) Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem Commun 47:6906–6908

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Wong PK (2011c) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interf Sci 357:163–167

    Article  CAS  Google Scholar 

  • Xie Y-C, Tang Y-Q (1990) Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. In: D.D. Eley HP , Paul BW (Editors), Advances in Catalysis. Academic Press, pp. 1–43

  • Yamin Y, Keller N, Keller V (2012) WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation. J Photoch Photobio A 245:43–57

    Article  CAS  Google Scholar 

  • Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Article  CAS  Google Scholar 

  • Yin S, Ihara K, Komatsu M, Zhang Q, Saito F, Kyotani T, Sato T (2006) Low temperature synthesis of TiO2−xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun 137:132–137

    Article  CAS  Google Scholar 

  • Yu J, Yu H, Cheng B, Zhao X, Zhang Q (2006a) Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J Photoch Photobio A 182:121–127

    Article  CAS  Google Scholar 

  • Yu J, Yu H, Cheng B, Zhou M, Zhao X (2006b) Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J Mol Catal A-Chem 253:112–118

    Article  CAS  Google Scholar 

  • Yu J, Zhou M, Cheng B, Zhao X (2006c) Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J Mol Catal A-Chem 246:176–184

    Article  CAS  Google Scholar 

  • Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B-Environ 90:595–602

    Article  CAS  Google Scholar 

  • Zhang R, Bai Y, Zhang B, Chen L, Yan B (2012) The potential health risk of titania nanoparticles. J Hazard Mater 211–212:404–413

    Google Scholar 

  • Zhang S, Chen Q, Peng LM (2005) Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys Rev B 71:014104

    Article  Google Scholar 

  • Zhou M, Yu J (2008) Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. J Hazard Mater 152:1229–1236

    Article  CAS  Google Scholar 

  • Zhou P, Yu J, Wang Y (2013) The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles. Appl Catal B-Environ 142–143:45–53

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was mainly provided by Fundação para a Ciência e a Tecnologia (FCT) under the project PTDC/EQU-EQU/100554/2008. This work was also supported by projects PEst-C/EQB/LA0020/2013 and PEst-OE/QUI/UI0616/2014, financed by FCT and FEDER through COMPETE—Programa Operacional Factores de Competitividade, and by QREN, ON2 (Programa Operacional do Norte) and FEDER through projects NORTE-07-0162-FEDER-000050, NORTE-07-0162-FEDER-000015, and NORTE-07-0202-FEDER-38900. Ricardo A. Monteiro and F.V.S. Lopes would like to acknowledge FCT for their PhD (SFRH/BD/69323/2010) and Post-doc (SFRH/BPD/73894/2010) Research Fellowships, respectively. R.A.R. Monteiro gratefully acknowledge Yas Yamin, Anne Roemer, Nicolas Keller and Valerie Keller from ICPEES—Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, CNRS and University of Strasbourg, France, for the human and scientific knowledge shared, as well as for providing experimental facilities. V.J.P. Vilar and A.M.T. Silva acknowledge the FCT Investigator 2013 Programme (IF/01501/2013 and IF/00273/2013, respectively), with financing from the European Social Fund and the Human Potential Operational Programme

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrián M. T. Silva or Vítor J. P. Vilar.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, R.A.R., Lopes, F.V.S., Boaventura, R.A.R. et al. Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications. Environ Sci Pollut Res 22, 810–819 (2015). https://doi.org/10.1007/s11356-014-2943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2943-3

Keywords

Navigation