Skip to main content
Log in

Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb2+, Cd2+, and Zn2+ respectively after 60 min; 0.182–0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Maryland

    Google Scholar 

  • Bandyopadhyaya R, Sivaiah MV, Shankar PA (2008) Technical note: silver-embedded granular activated carbon as an antibacterial medium for water purification. J Chem Technol Biotechnol 83:1177–1180

    Article  CAS  Google Scholar 

  • Bektas N, Kara S (2004) Removal of lead from aqueous solutions by natural clinoptilolite: equilibrium and kinetic studies. Sep Purif Technol 39:189–200

    Article  CAS  Google Scholar 

  • Bognachikova N, Concepcion-Rosabal B, Petranovskii V, Avalos Boja M, Rodriguez-Fuentes G (2000) Microbicide effect of Ag-clinoptilolites, part 1: preparation and investigation of the structure of samples containing silver in different states, Complex Mediums. In: Proceedings of SPIE 4097, San Diego, CA, 30, June 2000: 322–329

  • Concepcion-Rosabal B, Rodriguez-Fuentes G, Bogdanchikova N, Bosch P, Avalos P, Lara VH (2005) Comparative study of natural and synthetic clinoptilolites containing silver in different states. Microporous Mesoporous Mater 86:249–255

    Article  CAS  Google Scholar 

  • Copcia VE, Luchian C, Dunca S, Bilba N, Hristodor CM (2011) Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci 46:7121–7128

    Article  CAS  Google Scholar 

  • De la Rosa GI, Olguin MT, Alcantara D (2008a) Antibacterial behaviour of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system. J Environ Manag 40:853–863

    Google Scholar 

  • De la Rosa GI, Olguin MT, Alcantara D (2008b) Bactericides of coliform microorganisms from wastewater using silver-clinoptilolite rich tuffs. Appl Clay Sci 40:45–53

    Article  Google Scholar 

  • De la Rosa GI, Olguin MT, Alcantara D (2010) Silver-modified Mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli. J Mex Chem Soc 54:139–142

    Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Gedik K, Imamoglu I (2008) Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J Hazard Mater 155:385–392

    Article  CAS  Google Scholar 

  • Guerra R, Lima E, Viniegra M, Guzman A, Lara V (2012) Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites. Microporous Mesoporous Mater 147:267–273

    Article  Google Scholar 

  • Gunay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface 162:39–58

    Article  Google Scholar 

  • Hrenovic J, Milenkovic J, Ivankovic T, Rajic N (2012) Antibacterial activity of heavy metal-loaded natural zeolite. J Hazard Mater 201–202:260–264

    Article  Google Scholar 

  • Inglezakis VJ, Loizidou MD, Grigoropoulou HP (2002) Equilibrium and Kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res 36:2784–2792

    Article  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shim S (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  Google Scholar 

  • Krishnani KK, Zhang Y, Xiong L, Yan Y, Boopathy R, Mulchandani A (2012) Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresource Technol 117:86–91

    Article  CAS  Google Scholar 

  • Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) Antimicrobial action and efficiency of silver loaded zeolite X. J Appl Microbiol 104:1516–1524

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  • Matsumara Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of Bactericidal action of Silver Zeolite and its comparison with that of Silver Nitrate. Appl Environ Microbiol 69:4278–4281

    Article  Google Scholar 

  • Mumpton FA, Ormsby AC (1976) Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clays Clay Mineral 24:1–23

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Ouki S, Cheeseman C, Perry R (1993) Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol 27:1108–1116

    Article  Google Scholar 

  • Pathak Satya P, Gopal K (2012) Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection. Environ Sci Pollut Res 19:2285–2290

    Article  CAS  Google Scholar 

  • Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ (1998) Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 23:143–148

    Article  CAS  Google Scholar 

  • Rivera-Garza M, Olguin MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater 29:431–444

    Article  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Yunus WMZ, Ibrahim NA (2011a) Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomedicine 6:331–341

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zargat M, Yunus WMZ, Rustaiyan A, Ibrahim NA (2011b) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behaviour. Int J Nanomedicine 6:581–590

    Article  CAS  Google Scholar 

  • Silvestry-Rodriguez N, Sicairos-Ruelas E, Gerba CP, Bright KR (2007) Silver as a disinfectant. Rev Environ Contam T 191:23–45

    CAS  Google Scholar 

  • Spain A (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergrad Res 2:1–6

    Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namiesnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28

    Article  CAS  Google Scholar 

  • Sprynskyy M, Golembiewski R, Trykowski G, Buszewski B (2010) Heterogeneity and hierarchy of clinoptilolite porosity. J Phys Chem Solids 71:1269–1277

    Article  CAS  Google Scholar 

  • Top A, Ulku S (2004) Silver, zinc and copper exchange in an Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19

    Article  CAS  Google Scholar 

  • Van Grieken R, Marugán J, Pablos C, Furones L, López A (2010) Comparison between the photocatalytic inactivation of Gram-positive E. faecalis and Gram-negative E. coli faecal contamination indicator microorganisms. Appl Catal B Environ 100:212–220

    Article  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    Article  CAS  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Akhigbe.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhigbe, L., Ouki, S., Saroj, D. et al. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environ Sci Pollut Res 21, 10940–10948 (2014). https://doi.org/10.1007/s11356-014-2888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2888-6

Keywords

Navigation