Skip to main content
Log in

Synthesis and characterization of TiO2 and TiO2/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis

  • Advanced Oxidation Technologies: Advances and Challenges in IberoAmerican Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper reports the synthesis, characterization, and application of TiO2 and TiO2/Ag nanoparticles for use in photocatalysis, employing the herbicide methylviologen (MV) as a substrate for photocatalytic activity testing. At suitable metal to oxide ratios, increases in silver surface coating on TiO2 enhanced the efficiency of heterogeneous photocatalysis by increasing the electron transfer constant. The sol–gel method was used for TiO2 synthesis. P25 TiO2 was the control material. Both oxides were subjected to the same silver incorporation process. The materials were characterized by conventional spectroscopy, SEM micrography, X-ray diffraction, calculation of surface area per mass of catalyst, and thermogravimetry. Also, electron transfers between TiO2 or TiO2/Ag and MV in the absence and presence of sodium formate were investigated using laser flash photolysis. Oxides synthesized with 2.0 % silver exhibited superior photocatalytic activity for MV degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 13

Similar content being viewed by others

References

  • Ahmed S (2012) Impact of operating conditions and recent developments in heterogeneous photocatalytic water purification process. Crit Rev Environ Sci Technol 42(6):601–675

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C 7:127–144

    Article  CAS  Google Scholar 

  • Baird C (1998) Environmental chemistry, 2nd edn. WH Freeman and Company, New York

    Google Scholar 

  • Basha S, Keane D, Morrissey A, Nolan K, Oelgemoller M, Tobin J (2010) Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs). Ind Eng Chem Res 49:11302–11309

    Article  CAS  Google Scholar 

  • Bessa E, Sant’anna GL Jr, Dezotti M (2001) Photocatalytic/H2O2 treatment of oil field produced waters. Appl Catal B 29:125–134

    Article  CAS  Google Scholar 

  • Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary MRP (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754

    Article  CAS  Google Scholar 

  • Cavalcante RP, Sandim LR, Bogo D, Barbosa AMJ, Osugi ME, Blanco M, Oliveira SC, Matos MFC, Machulek A Jr, Ferreira VS (2013) Application of Fenton, photo-Fenton, solar photo-Fenton, and UV/H2O2 to degradation of the antineoplastic agent mitoxantrone and toxicological evaluation. Environ Sci Pollut Res 20:2352–2361

    Article  CAS  Google Scholar 

  • Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  • Das TN, Ghanty TK, Pal H (2003) Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: mechanism derived from pulse radiolysis measurements and ab initio MO calculations. J Phys Chem A 107(31):5998–6006

    Article  CAS  Google Scholar 

  • Derbalah AS, Nakatani N, Sakugawa H (2004) Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57:635–644

    Article  CAS  Google Scholar 

  • El-Kemary M, Abdel-Moneam Y, Madkour M, El-Mehasseb I (2011) Enhanced photocatalytic degradation of safranin-O by heterogeneous nanoparticles for environmental applications. J Lumin 131:570–576

    Article  CAS  Google Scholar 

  • González VR, Pineda FMM, Angel PD, Cuchillo OV, Gómez R (2001) Sol–gel and impregnated prepared silver TiO2 semiconductors as photocatalysts for the UV decomposition of 2,4-D: a comparative study of the preparation method. J Sol-Gel Sci Technol 59:57–62

    Article  Google Scholar 

  • Gozzi F, Machulek A Jr, Ferreira VS, Osugi ME, Santos APF, Nogueira JA, Dantas RF, Esplugas S, Oliveira SC (2012) Investigation of chlorimuron-ethyl degradation by Fenton, photo-Fenton and ozonation processes. Chem Eng J 210:444–450

    Article  CAS  Google Scholar 

  • Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 671–698

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Machulek A Jr, Vautier-Giongo C, Moraes JEF, Nascimento CAO, Quina FH (2006) Laser flash photolysis study of the photocatalytic step of the photo-fenton reaction in saline solution. Photochem Photobiol 82:208–212

    Article  CAS  Google Scholar 

  • Machulek A Jr, Moraes JEF, Vautier-Giongo C, Silverio CA, Friedrich LC, Nascimento CAO, Gonzalez MC, Quina FH (2007) Abatement of the inhibitory effect of chloride anions in the photo-Fenton process. Environ Sci Technol 41:8459–8463

    Article  CAS  Google Scholar 

  • Machulek A Jr, Moraes JEF, Silverio CA, Okano LT, Quina FH (2009) Photolysis of ferric ion in the presence of sulfate or chloride ions: implications for the photo-Fenton process. Photochem Photobiol Sci 8:985–991

    Article  CAS  Google Scholar 

  • Marcone GPS, Oliveira AC, Almeida G, Umbuzeiro GA, Jardim WF (2012) Ecotoxicity of TiO2 to Daphnia similis under irradiation. J Hazard Mater 211–212:436–442

    Article  Google Scholar 

  • Matthews RW (1991) Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res 25:1169–1176

    Article  CAS  Google Scholar 

  • Melo SAS, Trovó AG, Bautitz IR, Nogueira RFP (2009) Degradação de fármacos residuais por processos oxidativos avançados. Quim Nova 32:188–197

    Article  CAS  Google Scholar 

  • Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A 216:179–182

    Article  CAS  Google Scholar 

  • Pathak P, Meziani MJ, Castillo L, Sun Y (2005) Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7:667–670

    Article  CAS  Google Scholar 

  • Romero AHH, Hernández CT, Malo EA, Mendoza RB (2004) Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar Pollut Bull 48:1130–1141

    Article  Google Scholar 

  • Scaiano JC (1989) CRC handbook of organic photochemistry. CRC Press, Boca Raton

    Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1979) Identificação espectrofotométrica de compostos orgânicos. Editora Guanabara, Rio de Janeiro

    Google Scholar 

  • Sobczyński A, Dobosz A (2001) Water purification by photocatalysis on semiconductors. Pol J Environ Stud 10:195–205

    Google Scholar 

  • Tachikawa T, Tojo S, Fujitsuka M, Majima T (2004) Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions. Langmuir 20:9441–9444

    Article  CAS  Google Scholar 

  • Wang HW, Lin HC, Kuo CH, Cheng YL, Yen YC (2008) Synthesis and photocatalysis of mesoporous anatase TiO2 powders incorporated Ag nanoparticles. J Phys Chem Solids 69:633–636

    Article  CAS  Google Scholar 

  • Yang H, An T, Li G, Song W, Cooper WJ, Lu H, Guo X (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of β-blockers. J Hazard Mater 179:200–207

    Google Scholar 

  • Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2:157–164

    Article  CAS  Google Scholar 

  • Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu A, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19:10372–10380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Brazilian funding agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul) for their financial support. A.M.Jr. is associated with NAP-PhotoTech, the USP Research Consortium for Photochemical Technology, and INCT-EMA (Instituto Nacional de Ciência e Tecnologia de Estudos do Meio Ambiente).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amilcar Machulek Jr..

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, D.D., Bezerra, P.C.S., Quina, F.H. et al. Synthesis and characterization of TiO2 and TiO2/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis. Environ Sci Pollut Res 22, 774–783 (2015). https://doi.org/10.1007/s11356-014-2678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2678-1

Keywords

Navigation