Skip to main content

Advertisement

Log in

Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

High-purity ilmenite, FeTiO3, was prepared by the sol–gel method and calcination under nitrogen atmosphere. Several FeTiO3/TiO2 catalysts were prepared by the impregnation method using ilmenite and titania, both synthesized by the sol–gel method with ethanol and acetic acid. FeTiO3/TiO2 photocatalysts exhibited significant absorption in the ultraviolet (UV) region with an energy bandgap between 2.9 and 3.1 eV. These materials are more active than titania (Degussa P25) for degradation of Orange G and 4-chlorophenol under illumination from a visible-light lamp. This effect may be attributed to the formation of a heterojunction at the point of contact between FeTiO3 and TiO2 particles. However, 4-chlorophenol is mineralized via formation of hydroquinone and benzoquinone, indicating that when illuminated with a solar emulator lamp, the materials did not generate enough HO· radicals to promote formation of benzenetriol and catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.C. Wilson, J. Muscat, D. Mkhonto, P.E. Ngoepe, N.M. Harrison, Phys. Rev. B71(7), 075202-1–075202-9 (2005)

    Google Scholar 

  2. R.P. Liferovich, R.H. Mitchell, Crystallogr. Rep. 51(3), 383–390 (2006)

    Article  CAS  Google Scholar 

  3. B. Zhang, T. Katsura, A. Shatskiy, T. Matsuzaki, X. Wu, Phys. Rev. B73, 134104-1–134104-5 (2006)

    Google Scholar 

  4. D.M. Giaquinta, H. Loye, Chem. Mater. 6, 365–372 (1994)

    Article  CAS  Google Scholar 

  5. A. Navrotsky, Chem. Mater. 10, 2787–2793 (1998)

    Article  CAS  Google Scholar 

  6. T. Fujii, H. Oohashi, T. Tochio, Y. Ito, A. Vlaicu, S. Fukushima, J. Electron Spectrosc. Relat. Phenom. 184, 10–15 (2011)

    Article  CAS  Google Scholar 

  7. X. Wu, N.G. Steinle, O. Narygina, I. Kantor, C.M. Cammon, S. Pascarelli, G. Aquilanti, V. Prakapenka, L. Dubrovinsky, Phys. Rev. B79, 094106-1–094106-7 (2009)

    Google Scholar 

  8. G.B. Andreozzi, F. Cellucci, D. Gozzi, J. Mater. Chem. 6, 987–991 (1996)

    Article  CAS  Google Scholar 

  9. J. Mona, S.N. Kale, A.B. Gaikwad, A. Vadivel, V. Ravi, Mater. Lett. 60, 1425–1427 (2006)

    Article  CAS  Google Scholar 

  10. Y.J. Kim, B. Gao, S.Y. Han, H.M. Jung, A.K. Chakraborty, T. Ko, C. Lee, W.I. Lee, J. Phys. Chem. C 113(44), 19179–19184 (2009)

    Article  CAS  Google Scholar 

  11. S. Ohara, K. Sato, Z. Tan, H. Shimoda, M. Ueda, T. Fukui, J. Alloys Compd. 504, L17–L19 (2010)

    Article  CAS  Google Scholar 

  12. A.B. Gambhire, M.K. Lande, S.B. Rathod, B.R. Arbad, K.N. Vidhate, R.S. Gholap, K.R. Patil, Arab. J. Chem. doi:10.1016/j.arabjc.2011.05.012

  13. Y.H. Chen, J. Non-Cryst. Solids 357, 136–139 (2011)

    Article  CAS  Google Scholar 

  14. A.T. Raghavender, N.H. Hong, K.J. Lee, M. Jung, Z. Skoko, M. Vasilevskiy, M.F. Cerqueira, A.P. Samantilleke, J. Magn. Magn. Mater. 331, 129–132 (2013)

    Article  CAS  Google Scholar 

  15. S.W. Chen, M.J. Huang, P.A. Lin, H.T. Jeng, J.M. Lee, S.C. Haw, S.A. Chen, H.J. Lin, K.T. Lu, D.P. Chen, S.X. Dou, X.L. Wang, J.M. Chen, Appl. Phys. Lett. 102, 042107-1–042107-5 (2013)

    Google Scholar 

  16. X. Tang, K. Hu, J. Mater. Sci. 41, 8025–8028 (2006)

    Article  CAS  Google Scholar 

  17. L. Fudong, H. Hong, Z. Changbin, Chem. Commun. 17, 2043–2045 (2008)

  18. B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Appl. Catal. B Environ. 83, 202–207 (2008)

    Article  CAS  Google Scholar 

  19. Q.D. Truong, J.Y. Liu, C.C. Chung, Y.C. Ling, Catal. Commun. 19, 85–89 (2012)

    Article  CAS  Google Scholar 

  20. F.A. Caliman, M. Gavrilescu, Clean 37(4–5), 277–303 (2009)

    CAS  Google Scholar 

  21. T.E. Félix-Cañedo, J.C. Durán-Álvarez, B. Jiménez-Cisneros, Sci. Total Environ. 454–455, 109–118 (2013)

    Article  Google Scholar 

  22. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Environ. Chem. Lett. 12, 27–47 (2014)

    Article  CAS  Google Scholar 

  23. P. Gao, Y. Ding, H. Li, I. Xagoraraki, Chemosphere 88, 17–24 (2012)

    Article  CAS  Google Scholar 

  24. M. Montaño, A.C. Gutleb, A.J. Murk, Environ. Sci. Technol. 47, 6071–6081 (2013)

    Google Scholar 

  25. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1–59 (2009)

    Article  CAS  Google Scholar 

  26. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  27. R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581–3599 (2013)

    CAS  Google Scholar 

  28. D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186–205 (2005)

    Article  CAS  Google Scholar 

  29. J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, ACS Appl. Mater. Interfaces 4, 424–430 (2012)

    Article  CAS  Google Scholar 

  30. G.A. Traistaru, C.I. Covaliu, V. Matei, D. Cusaru, I. Jitaru, Dig. J. Nanomater. Biostruct. 6, 1257–1263 (2011)

    Google Scholar 

  31. E. Moctezuma, B. Zermeño, E. Zarazua, L. Torres-Martínez, R. García, Top. Catal. 54, 496–503 (2011)

    Article  CAS  Google Scholar 

  32. J.G. Ibañez, O. Solorza, E. Gómez del Campo, J. Chem. Educ. 68, 872–875 (1991)

    Article  Google Scholar 

  33. J. Torrent, V. Barrón, Encycl. Surf. Colloid Sci. 1438–1446 (2002)

  34. B. Zermeño, E. Moctezuma, R. Gracía-Alamilla, Environ. Res. 21, 299–305 (2011)

    Google Scholar 

  35. X. Li, J.W. Cubbage, T.A. Tetzlaff, W.S. Jenks, J. Org. Chem. 64, 8509–8524 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT for financial support through projects FOINS/75/2012 Fotosíntesis Artificial, CNPq México-Brasil Nanotecnologías 2011-174247, CB-168730, ProyectoRedes 2012 clave 194451, CB-2008-01-103532 and Ph.D. Scholarship No. 87101. We also thank the Universidad Autónoma de Nuevo León for its support through projects PAICYT-UANL-2011–2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia M. Torres-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarazúa-Morín, M.E., Torres-Martínez, L.M., Moctezuma, E. et al. Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light. Res Chem Intermed 42, 1029–1043 (2016). https://doi.org/10.1007/s11164-015-2071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2071-9

Keywords

Navigation