Skip to main content
Log in

Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To understand the transport and fate of antibiotic resistance genes in wastewater treatment plants, 12 resistance genes (ten tetracycline resistance genes, two sulfonamides genes) and class 1 integron gene (intI1) were studied in five wastewater treatment plants with different treatment processes and different sewage sources. Among these resistance genes, sulfonamides genes (sul1 and sul2) were of the most prevalent genes with detection frequency of 100 %. The effluent water contained fewer types of resistance genes than the influent in most selected plants. The abundance of five quantified resistance genes (tetG, tetW, tetX, sul1, and intI1) decreased in effluent of plants treating domestic or industrial wastewater with anaerobic/aerobic or membrane bioreactor (MBR) technologies, but tetG, tetX, sul1, and intI1 increased along the treatment units of plants treating vitamin C production wastewater by anaerobic/aerobic technology. In plant treating cephalosporins production wastewater by UASB/aerobic process, the quantities of tetG, tetX, and sul1 first decreased in anaerobic effluent water but then increased in aerobic effluent water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu-Lail LI, Liu Y, Atabek A, Camesano (2007) Quantifying the adhesion and interaction forces between Pseudomonas aeruginosa and natural organic matter. Environ Sci Technol 41:8031–8037

    Article  CAS  Google Scholar 

  • Akinbowale OL, Peng H, Barton MD (2006) Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol 100:1103–1113

    Article  CAS  Google Scholar 

  • Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32

    Article  CAS  Google Scholar 

  • Antunes P, Machado J, Sousa JC, Peixe L (2005) Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Chemother 49:836–839

    Article  CAS  Google Scholar 

  • Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151

    Article  CAS  Google Scholar 

  • Baquero F, Martinez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  Google Scholar 

  • Chen H, Zhang M (2013) Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environ Sci Technol 47:8157–8163

    CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2:232–260

    Article  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 3:417–433

    Article  Google Scholar 

  • Dolliver H, Gupta S (2008) Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J Environ Qual 37:1227–1237

    Article  CAS  Google Scholar 

  • Figueira V, Serra E, Manaia CM (2011) Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste- and surface waters. Sci Total Environ 409:1017–1023

    Article  CAS  Google Scholar 

  • Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012) Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res 46:2355–2364

    Article  CAS  Google Scholar 

  • Gulkowskaa A, Leunga HW, Soa MK, Taniyasub S, Yamashitab N, Yeunga LWY, Richardsona BJ, Leic AP, Giesya JP, Lam PKS (2008) Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 42:395–403

    Article  Google Scholar 

  • Huang X, Liu C, Li K, Liu F, Liao D, Liu L, Zhu G, Liao J (2013) Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environ Sci Pollut Res. doi:10.1007/s11356-013-1905-5

  • Jun LJ, Jeong JB, Huh MD, Chung JK, Choi DI, Lee CH, Jeong HD (2004) Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea. Aquaculture 240:89–100

    Article  CAS  Google Scholar 

  • LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 45:9543–9549

    Article  CAS  Google Scholar 

  • Li WH, Shi YL, Gao LH, Liu JM, Cai YQ (2013) Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 92:435–444

    Article  CAS  Google Scholar 

  • Lim SJ, Seo CK, Kim TH (2013) Occurrence and ecological hazard assessment of selected veterinary medicines in livestock wastewater treatment plants. J Environ Sci Health B 8:658–670

    Article  Google Scholar 

  • Liu M, Zhang Y, Yang M, Tian Z, Ren L, Zhang S (2012) Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol 46:7551–7557

    Article  CAS  Google Scholar 

  • Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez PJJ (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7220–7225

    Article  Google Scholar 

  • Ma LP, Zhang XX, Cheng SP, Zhang ZY, Shi P, Liu B, Wu B, Zhang Y (2011) Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. Ecotoxicology 20:968–973

    Article  CAS  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  Google Scholar 

  • Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15:209–215

    Article  CAS  Google Scholar 

  • Peak N, Knapp CW, Yang RK, Hanfelt MM, Smith MS, Aga DS, Graham DW (2007) Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 1:143–151

    Article  Google Scholar 

  • Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    Article  CAS  Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450

    Article  CAS  Google Scholar 

  • Saussereau E, Lacroix C, Guerbet M (2013) Determination of levels of current drugs in hospital and urban wastewater. Bull Environ Contam Toxicol 2:171–176

    Article  Google Scholar 

  • Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006) Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb Ecol 51:267–276

    Article  Google Scholar 

  • Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161

    Article  Google Scholar 

  • Wei FS (2002) Monitoring and analysis methods of water and wastewater, 4th edn. China Environmental Sciences Press, Beijing

    Google Scholar 

  • Zhang T, Zhang M, Zhang XX, Fang HH (2009a) Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environ Sci Technol 43:3455–3460

    Article  CAS  Google Scholar 

  • Zhang XX, Wu B, Zhang Y, Zhang T, Yang L, Fang HHP, Ford T, Cheng S (2009b) Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology 18:652–660

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T, Fang HHP (2009c) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T, Zhang M, Fang HH, Cheng SP (2009d) Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl Microbiol Biotechnol 82:1169–1177

    Article  CAS  Google Scholar 

  • Zhou LJ, Ying GG, Liu S, Zhao JL, Yang B, Chen ZF, Lai HJ (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (no. 51278241) and the Jiangsu Natural Science Foundation (no. BK2011016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqiang Ren or Jinju Geng.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Ren, H., Geng, J. et al. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environ Sci Pollut Res 21, 7276–7284 (2014). https://doi.org/10.1007/s11356-014-2613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2613-5

Keywords

Navigation