Skip to main content

Antibiotic Resistance Genes as Contaminants in Industrial Wastewater Treatment

  • Chapter
  • First Online:
Genomics of Antibiotic Resistant Bacteria in Industrial Waste Water Treatment

Abstract

Antibiotic resistance genes (ARGs) are nucleic acid sequences found in bacteria that help them survive in environments containing low–high concentrations of inhibitory chemicals called antibiotics. Due to the use/overuse of antibiotics since their discoveries, many experiments reported bacteria gaining these genes via horizontal gene transfer from resistant bacteria on the environmental scale, making it an ever-increasing threat to humans, animals and plants as there is a risk of acquiring incurable infections. Wastewater treatment plants (WWTP) use aerobic and anaerobic bacteria in sludge digesters to breakdown complex organic matter in sewage. Industries and sometimes hospitals combine their sewage with municipal sewage without treatment as the sewer service charge to be paid by them may be low enough in this option. These additional nutrients enable the wastewater bacteria found naturally in it to grow even more quickly, thus promoting a faster spread of ARGs between the cells of the same/different genera. These cells and the free ARGs might go on to transform the bacteria in the WWTP sludge digesters also. Some studies have shown that WWTPs are the point source of ARG introduction into water catchment zones like rivers and lakes as they increase the quantities of ARGs and antibiotics present in comparison with their quantities in the influent. They were also found to be persistent in the water of such bodies (a Dutch river) for over 20 km downstream from the point of wastewater introduction. Here, these ARGs are likely to settle down and then be found as contaminants in the sediments of these water bodies entrapped with wastewater bacteria inside the wastewater solids and flocs. It is possible to quantify different ARGs as seen in research article published in the ISME journal which uses real-time PCR to quantify the relative spatial abundance of ARGs present in the sediments that were introduced into the Vidy Bay region of Geneva Lake by the Lausanne WWTP, Switzerland. It was found that the sul1 gene was present in quantities higher than sul2, tet(w), and tet(M) genes and the tet(B) gene was found to be the least abundant. The qnrA gene on the other hand was always present in quantities below the detection limit. ARG contamination can be addressed if all hospitals, pharmaceutical and biotech industries treat their effluents before draining it into the sewers such that it is free of live resistance possessing bacteria, transducing phages, major ARGs, chemicals and biodegradable matter. In addition to this, abuse/overdosing of the over-the-counter oral antibiotics must also be tackled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaboudi, A., Basha, E. A., & Musallam, I. L. (2013). Chlortetracycline and sulfanilamide residues in table eggs: Prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control, 33, 281–286.

    Article  CAS  Google Scholar 

  • Aminov, R. I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmental Microbiology, 11, 2970–2988. https://doi.org/10.1111/j.1462-2920.2009.01972.x

    Article  CAS  Google Scholar 

  • Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12, 465–478.

    Article  CAS  Google Scholar 

  • Appelbaum, P. C. (2006). The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clinical Microbiology & Infection, 12(1), 16–23.

    Article  CAS  Google Scholar 

  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658.

    Article  CAS  Google Scholar 

  • Auerbach, E. A., Seyfried, E. E., & McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41, 1143–1151.

    Article  CAS  Google Scholar 

  • Baquero, F., Negri, M. C., Morosini, M. I., & Blázquez, J. (1998). Antibiotic-selective environments. Clinical Infectious Diseases, 27, S5–S11.

    Article  Google Scholar 

  • Barancheshem, F., & Munir, M. (2018). Strategies to combat antibiotic resistance in the wastewater treatment plants. Frontiers in Microbiology, 8, 2603. https://doi.org/10.3389/fmicb.2017.02603

    Article  Google Scholar 

  • Barton, M. D. (2014). Impact of antibiotic use in swine industry. Current Opinion in Microbiology, 19, 9–15.

    Article  Google Scholar 

  • Bengtsson, P. J., Milakovic, M., Švecová, H., Ganjto, M., Jonsson, V., et al. (2019). Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Research, 162, 437–445.

    Article  Google Scholar 

  • Brooks, J. P., Maxwell, S. L., Rensing, C., Gerba, C. P., & Pepper, I. (2007). Occurrence of antibiotic-resistant bacteria and endotoxin associated with the land application of biosolids. Canadian Journal of Microbiology, 53, 616–622.

    Article  CAS  Google Scholar 

  • Capita, R., & Calleja, C. A. (2013). Antibiotic-resistant bacteria: A challenge for the food industry. Critical Reviews in Food Science and Nutrition, 53, 11–48. https://doi.org/10.1080/10408398.2010.519837

    Article  CAS  Google Scholar 

  • Chen, C., Li, J., Chen, P., Ding, R., Zhang, P., & Li, X. (2014). Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental Pollution, 193, 94–101.

    Article  CAS  Google Scholar 

  • Chen, X., Yin, H., Li, G., Wang, W., Wong, P. K., Zhao, H., & An, T. (2019). Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Water Research, 149, 282–291.

    Article  CAS  Google Scholar 

  • Cheong, C., Hajeb, P., Jinap, S., & Ismail-Fitry, M. (2010). Sulfonamides determination in chicken meat products from Malaysia. International Food Research Journal, 17, 885–892.

    CAS  Google Scholar 

  • Colavecchio, A., Cadieux, B., Lo, A., & Goodridge, L. D. (2017). Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family—A review. Frontiers in Microbiology, 8.https://doi.org/10.3389/fmicb.2017.01108

  • Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303, 287–292.

    Article  CAS  Google Scholar 

  • Czekalski, N., Diez, E. G., & Burgmann, H. (2014). Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME Journal, 8, 1381–1390. https://doi.org/10.1038/ismej.2014.8

    Article  CAS  Google Scholar 

  • D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311, 374–377. https://doi.org/10.1126/science.1120800

    Article  Google Scholar 

  • Diehl, D. L., & LaPara, T. M. (2010). Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environmental Science and Technology, 44, 9128–9133.

    Article  CAS  Google Scholar 

  • Dodd, M. C. (2012). Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 14, 1754–1771.

    Article  CAS  Google Scholar 

  • Džidic, S., Šuškovic, J., & Kos, B. (2008). Antibiotic resistance mechanisms in bacteria: Biochemical and genetic aspects. Food Technology and Biotechnology, 46, 11–21.

    Google Scholar 

  • Farshad, A. A., Enferadi, M., Bakand, S., Jamshidi Orak, R., & Mirkazemi, R. (2006). Penicillin dust exposure and penicillin resistance among pharmaceutical workers in Tehran, Iran. International Journal of Occupational and Environmental Health, 22, 218–223.

    Google Scholar 

  • Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M., & Larsson, D. G. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28, 2522–2527.

    Article  CAS  Google Scholar 

  • Finley, R. L., Collignon, P., Larsson, D. G., McEwen, S. A., LiX, Z., Gaze, W. H., ReidSmith, R., Timinouni, M., Graham, D. W., & Topp, E. (2013). The scourge of antibiotic resistance: The important role of the environment. Clinical Infectious Diseases, 57, 704–710.

    Article  Google Scholar 

  • Fiorentino, A., Cesare, A. D., Eckert, E. M., Rizzo, L., Fontaneto, D., Yang, Y., & Corno, G. (2019). Impact of industrial wastewater on the dynamics of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Science of the Total Environment, 646, 1204–1210. https://doi.org/10.1016/j.scitotenv.2018.07.370

    Article  CAS  Google Scholar 

  • Fouz, N., Pangesti, K. N. A., Yasir, M., Al-Malki, A. L., Azhar, E. I., Cawthrone, G. A. H., & Ghany, M. A. E. (2020). The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Tropical Medicine and Infectious Disease, 5(33). https://doi.org/10.3390/tropicalmed5010033

  • Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the Total Environment, 421–422, 173–183. https://doi.org/10.1016/j.scitotenv.2012.01.061

    Article  CAS  Google Scholar 

  • Gaynes, R. (2017). The discovery of penicillin—New insights after more than 75 years of clinical use. Emerging Infectious Diseases, 23(5), 849–853.

    Article  Google Scholar 

  • Goldstein, R. E. R., Micallef, S., Gibbs, S., Davis, J., George, A., & Kleinfelter, L. (2012). Methicillin-resistant Staphylococcus aureus detected at four U.S. wastewater treatment plants. Environmental Health Perspectives, 120, 1551–1558.

    Article  CAS  Google Scholar 

  • Graham, D. W., Olivares-Rieumont, S., Knapp, C. W., Lima, L., Werner, D., & Bowen, E. (2010). Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environmental Science & Technology, 45, 418–428.

    Article  Google Scholar 

  • Hamscher, G., Pawelzick, H. T., Sczesny, S., Nau, H., & Hartung, J. (2003). Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environmental Health Perspectives, 111, 1590–1594.

    Article  CAS  Google Scholar 

  • Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 93(4), 395–402. https://doi.org/10.1016/j.mib.2014.05.017

    Article  CAS  Google Scholar 

  • Huang, X., Liu, C., Li, X., Liu, F., Liao, D., Liu, L., Zhu, G., & Liao, J. (2013). Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environmental Science and Pollution Research, 20, 9066–9074.

    Article  CAS  Google Scholar 

  • Hussain, S., Naeem, M., Chaudhry, M. N., & Iqbal, M. A. (2016). Accumulation of residual antibiotics in the vegetables irrigated by pharmaceutical wastewater. Expo Health, 8, 107–115.

    Article  CAS  Google Scholar 

  • Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80.

    Article  CAS  Google Scholar 

  • Khanal, B. K. S., Sadiq, M. B., Singh, M., & Anal, A. K. (2018). Screening of antibiotic residues in fresh milk of Kathmandu Valley, Nepal. Journal of Environmental Science and Health, Part B, 53, 57–86.

    Article  CAS  Google Scholar 

  • Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., & McArdell, C. S. (2012). Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environmental Science and Technology, 46, 1536–1545.

    Article  CAS  Google Scholar 

  • Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., & Weijdegård, B. (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, 6(2), e17038. https://doi.org/10.1371/journal.pone.0017038

    Article  CAS  Google Scholar 

  • Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., & Balakrishnan, R. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10, 597–602.

    Article  CAS  Google Scholar 

  • Larson, E. (2007). Community factors in the development of antibiotic resistance. Annual Review of Public Health, 28(1), 435–447. https://doi.org/10.1146/annurev.publhealth.28.021406.144020

    Article  Google Scholar 

  • Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755.

    Article  CAS  Google Scholar 

  • Le, T. H., Ng, C., Tran, N. H., Chen, H., & Gin, K. Y. (2018). Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Research, 145, 498–508.

    Article  CAS  Google Scholar 

  • Le Page, G., Gunnarsson, L., Snape, J., & Tyler, C. R. (2017). Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environment International, 109, 155–169.

    Article  Google Scholar 

  • Li, X. W., Xie, Y. F., Li, C. L., Zhao, H. N., Zhao, H., Wang, N., & Wang, J. F. (2014). Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China. Science of the Total Environment, 468, 258–264.

    Article  Google Scholar 

  • Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science and Technology, 44, 3468–3473.

    Article  CAS  Google Scholar 

  • Lin, J., Nishino, K., Roberts, M. C., Tolmasky, M., Aminov, R. I., & Zhang, L. (2015). Mechanisms of antibiotic resistance. Frontiers in Microbiology, 6, 34.

    Article  Google Scholar 

  • Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Moreira, I. V., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044

    Article  CAS  Google Scholar 

  • Mao, D., Yu, S., Rysz, M., Luo, Y., Yang, F., Li, F., Hou, J., Mu, Q., & Alvarez, P. J. J. (2015). Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Research, 85(5), 58–66. https://doi.org/10.1016/j.watres.2015.09.010

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2014). General principles of antibiotic resistance in bacteria. Drug Discovery Today, 11, 33–39.

    Article  Google Scholar 

  • McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P. N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123, 337.

    Article  Google Scholar 

  • Murray-Smith, R. J., Coombe, V. T., Grönlund, M. H., Waern, F., & Baird, J. A. (2012). Managing emissions of active pharmaceutical ingredients from manufacturing facilities: An environmental quality standard approach. Integrated Environmental Assessment and Management, 8, 320–330.

    Article  CAS  Google Scholar 

  • Nagulapally, S. R., Ahmad, A., Henry, A., Marchin, G. L., Zurek, L., & Bhandari, A. (2009). Occurrence of ciprofloxacin-, trimethoprim-sulfamethoxazole-, and vancomycin-resistant bacteria in a municipal wastewater treatment plant. Water Environment Research, 81, 82–90.

    Article  CAS  Google Scholar 

  • Palme, J. B., Milakovic, M., Svecova, H., Ganjito, M., Jonsson, V., Garbic, R., & Kolic, N. U. (2019). Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Research, 162, 437–445. https://doi.org/10.1016/j.watres.2019.06.073

    Article  CAS  Google Scholar 

  • Pankey, G. A., & Sabbath, L. D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clinical Infectious Diseases, 38(6), 864–870.

    Article  CAS  Google Scholar 

  • Plaza, J. J.G., Blau, K., Milakovic, M., Jurina, T., Smalla, K., & Kolic, N. U. (2019). Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. Environment International, 130. https://doi.org/10.1016/j.envint.2019.04.007

  • Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501.

    Article  CAS  Google Scholar 

  • Riquelme Breazeal, M. V., Vikesland, P. J., Novak, J. T., & Pruden, A. (2013). Effect of wastewater colloids on membrane removal of microconstituent antibiotic resistance genes. Water Research, 47, 130–140.

    Article  CAS  Google Scholar 

  • Sabri, N. A., Schmitt, H., Zaan, B. V. D., Gerritsen, H. W., Zuidema, T., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2018). Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of Environmental Chemical Engineering, 8(1). https://doi.org/10.1016/j.jece.2018.03.004

  • Schlüter, A., Szczepanowski, R., Pühler, A., & Top, E. M. (2007). Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiology Reviews, 31, 449–477.

    Article  Google Scholar 

  • Sharma, V. K., Johnson, N., Cizmas, L., McDonald, T. J., & Kim, H. (2015). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150, 702–714.

    Article  Google Scholar 

  • Singer, A. C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in Microbiology, 7, 1728.

    Article  Google Scholar 

  • Swedish Medical Products Agency (SMPA). (2011). Underlag för att möjliggöra initieringen av en revidering av EU-lagstiftningen om god tillverkningssed.

    Google Scholar 

  • Szczepanowski, R., Linke, B., Krahn, I., Gartemann, K. H., Gützkow, T., & Eichler, W. (2009). Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology, 155, 2306–2319.

    Article  CAS  Google Scholar 

  • Varela, M. F. (2019). Antimicrobial efflux pumps. Antibiotic Drug Resistance, 167–179.

    Google Scholar 

  • Walsh, T. R., Weeks, J., Livermore, D. M., & Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. The Lancet Infectious Diseases, 11, 355–362.

    Article  Google Scholar 

  • Wang, S., Ma, X., Liu, Y., Yi, X., Du, G., & Li, J. (2020). Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. Bioresource Technology, 302. https://doi.org/10.1016/j.biortech.2020.122825

  • Wang, H., Ren, L., Yu, X., Hu, J., Chen, Y., He, G., & Jiang, Q. (2017). Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control, 80, 217–225.

    Article  CAS  Google Scholar 

  • WHO. (2017). Antimicrobial Medicines Consumption (AMC) Network. Available online: http://www.euro.who.int/en/publications/abstracts/antimicrobial-medicines-consumption-amc-network-amc-data-20112014-2017

  • Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2014). Prescott’s microbiology (Vol. 9). McGraw Hill.

    Google Scholar 

  • Wistrand-Yuen, E., Knopp, M., Hjort, K., Koskiniemi, S., Berg, O. G., & Andersson, D. I. (2018). Evolution of high-level resistance during low-level antibiotic exposure. Nature Communications, 9, 1599.

    Article  Google Scholar 

  • Xie, W. Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science, 69, 181–195. https://doi.org/10.1111/ejss.12494

    Article  Google Scholar 

  • Yalew, S. T. (2020). Review on antibiotic resistance: resistance mechanisms, methods of detection and its controlling strategies. Biomedical Journal of Scientific & Technical Research, 24(5).

    Google Scholar 

  • Zaman, S., Hussain, M., Nye, R., et al. (2017). A review on antibiotic resistance: alarm bells are ringing. Cureus, 9(6), e1403.

    Google Scholar 

  • Zhang, T., & Li, B. (2011). Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Critical Reviews in Environment Science and Technology, 41, 951–998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raunak Dhanker or Touseef Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanker, R., Mammen, M., Singh, A., Goyal, S., Hussain, T., Tyagi, P. (2023). Antibiotic Resistance Genes as Contaminants in Industrial Wastewater Treatment. In: Shah, M.P. (eds) Genomics of Antibiotic Resistant Bacteria in Industrial Waste Water Treatment. Springer, Cham. https://doi.org/10.1007/978-3-031-44618-4_2

Download citation

Publish with us

Policies and ethics