Skip to main content

Advertisement

Log in

The role of precursor gases and meteorology on temporal evolution of O3 at a tropical location in northeast India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

South Asia, particularly the Indo-Gangetic Plains and foothills of the Himalayas, has been found to be a major source of pollutant gases and particles affecting the regional as well as the global climate. Inventories of greenhouse gases for the South Asian region, particularly the sub-Himalayan region, have been inadequate. Hence, measurements of the gases are important from effective characterization of the gases and their climate effects. The diurnal, seasonal, and annual variation of surface level O3 measured for the first time in northeast India at Dibrugarh (27.4° N, 94.9° E, 111 m amsl), a sub-Himalayan location in the Brahmaputra basin, from November 2009 to May 2013 is presented. The effect of the precursor gases NO x and CO measured simultaneously during January 2012–May 2013 and the prevailing meteorology on the growth and decay of O3 has been studied. The O3 concentration starts to increase gradually after sunrise attaining a peak level around 1500 hours LT and then decreases from evening till sunrise next day. The highest and lowest monthly maximum concentration of O3 is observed in March (42.9 ± 10.3 ppb) and July (17.3 ± 7.0 ppb), respectively. The peak in O3 concentration is preceded by the peaks in NO x and CO concentrations which maximize during the period November to March with peak values of 25.2 ± 21.0 ppb and 1.0 ± 0.4 ppm, respectively, in January. Significant nonlinear correlation is observed between O3 and NO, NO2, and CO. National Atmospheric and Oceanic Administration Hybrid Single-Particle Lagrangian Integrated Trajectory back-trajectory and concentration weighted trajectory analysis carried out to delineate the possible airmass trajectory and to identify the potential source region of NO x and O3 concentrations show that in post-monsoon and winter, majority of the trajectories are confined locally while in pre-monsoon and monsoon, these are originated at the Indo-Gangetic plains, Bangladesh, and Bay of Bengal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babu SS, Manoj MR, Krishna Moorthy K, Gogoi MM, Nair VS, Kompalli SK, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Darshan S (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. Journal of Geophysical Research: Atmospheres 118:1–13. doi:10.1002/2013JD020507

    Google Scholar 

  • Beig G, Gunthe S, Jadhav DB (2007) Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in Pune. J Atmos Chem 57:239–253

    Article  CAS  Google Scholar 

  • Chameides WL, Kaibhatla PS, Yienger J, Levy HI (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–77

    Article  CAS  Google Scholar 

  • Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus 43:136–151

    Article  Google Scholar 

  • Crutzen PJ, Lawrence MG, Poschl U (1999) On the background photochemistry of tropospheric ozone. Tellus, Ser A 51:123–146. doi:10.1034/j.1600-0870.1999.t01-1-00010.x

    Article  Google Scholar 

  • David LM, Nair PR (2011) Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: association with mesoscale and synoptic meteorological conditions. J Geophys Res 116, D10303. doi:10.1029/2010JD015076

    Article  Google Scholar 

  • Dickerson RR et al (2002) Analysis of black carbon and carbon monoxide observed over the Indian Ocean: implications for emissions and photochemistry. J Geophys Res 107(D19):8017

    Article  Google Scholar 

  • Fishman J, Crutzen PJ (1977) A numerical study of tropospheric photochemistry using a one dimensional model. J Geophys Res 82:5897–5906. doi:10.1029/JC082i037p05897

    Article  CAS  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282

    Article  Google Scholar 

  • Gogoi MM, Bhuyan PK, Moorthy KK (2009) Climatology of columnar aerosol properties and the influence of synoptic conditions: first‐time results from the north-eastern region of India. J Geophys Res 114, D08202. doi:10.1029/2008JD010765

    Google Scholar 

  • Gogoi MM, Pathak B, Krishna Moorthy K, Bhuyan PK, Suresh Babu S, Bhuyan K, Kalita K (2011) Multi-year investigations of near surface and columnar aerosols over Dibrugarh, northeastern location of India: heterogeneity in source impacts. Atmos Environ 45:1714–1724

    Article  CAS  Google Scholar 

  • Goto D, Takemura T, Nakajima T, Badarinath KVS (2011) Global aerosol model-derived black carbon concentration and single scattering albedo over the Indian region and its comparison with ground observation. Atmos Environ 45:33277–33285

    Article  Google Scholar 

  • Han S, Bian H, Feng Y, Liu A, Li X et al (2011) Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research 11:128–139

    Google Scholar 

  • Holloway T, Levy H, Kasibhatla P (2000) Global distribution of carbon monoxide. J Geophys Res 105:12123–12147

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi, India. Int J Remote Sens 26:3515–3524

    Article  Google Scholar 

  • Jallad KN, Jallad CE (2010) Analysis of ambient ozone and precursor monitoring data in a densely populated residential area of Kuwait. J Saudi Chem Soc 14:363–372

    Article  CAS  Google Scholar 

  • Kalita G, Bhuyan P K, (2011) Spatial heterogeneity in tropospheric column ozone over the Indian subcontinent: long-term climatology and possible association with natural and anthropogenic activities. Advances in Meteorology, Volume 2011, Article ID 924516, 12 pages. doi:10.1155/2011/924516

  • Kumar R, Naja M, Venkataramani S, Wild O (2010) Variations in surface ozone at Nainital, a high altitude site in the central Himalayas. J Geophys Res 115, D16302. doi:10.1029/2009JD013715

    Article  Google Scholar 

  • Lal S, Naja M, Subbaraya BH (2000) Seasonal variation in the surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724

    Article  CAS  Google Scholar 

  • Lelieveld J et al (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    Article  CAS  Google Scholar 

  • Lelieveld J et al (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799

    Article  CAS  Google Scholar 

  • Li QB et al (2001) A tropospheric ozone maximum in the Middle East. Geophys Res Lett 28:3235–3238

    Article  CAS  Google Scholar 

  • Lin S, Trainer M, Liu SC (1988) On the nonlinearity of the tropospheric ozone production. J Geophys Res 93:15879

    Article  Google Scholar 

  • Lin YC, Lin CY, Lin PH, Engling G, Lan YY, Kuo TH, Hsua WT, Ting CC (2011) Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: seasonal variations and influence of Asian continental outflow. Sci Total Environ. doi:10.1016/j.scitotenv.2011.04.023

  • Logan JA, Prather JJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86:7210–7254. doi:10.1029/JC086iC08p07210

    Article  CAS  Google Scholar 

  • Londhe AL, Jadhav DB, Buchunde PS, Kartha MJ (2008) Surface ozone variability in the urban and nearby rural locations of tropical India. Curr Sci 95(12):1724–1729

    Google Scholar 

  • Moy LA, Dickerson RR, Ryan WF (1994) Relationship between back trajectories and tropospheric trace gas concentrations in rural Virginia. Atmos Environ 28:2789–2800

    Article  CAS  Google Scholar 

  • Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.5° N, 79.2° E), a tropical rural site in India. J Geophys Res 107:4197

    Article  Google Scholar 

  • Naja M, Lal S, Chand D (2003) Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt. Abu (24.6N, 72.7E, 1680 amsl) in India. Atmos Environ 37:4205

    Google Scholar 

  • Nishanth T, Satheesh Kumar MK, Valsaraj KT (2012) Variations in surface ozone and NOx at Kannur: a tropical, coastal site in India. J Atmos Chem 50. doi:10.1007/s10874-012-9234-5

  • Ojha N, Naja M, Singh KP, Sarangi T, Kumar R, Lal S, Lawrence MG, Butler TM, Chandola HC (2012) Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: association with the meteorology and regional processes. J Geophys Res 117, D20301. doi:10.1029/2012JD017716

    Google Scholar 

  • Pan XL, Kanaya Y, Wang ZF, Liu Y, Pochanart P, Akimoto H, Sun YL, Dong HB, Li J, Irie H, Takigawa M (2011) Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China. Atmos Chem Phys 11:9735–9747. doi:10.5194/acp-11-9735-2011

    Article  CAS  Google Scholar 

  • Pathak B, Kalita G, Bhuyan K, Bhuyan PK, Moorthy KK (2010) Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the North East of India. J Geophys Res 115, D19204. doi:10.1029/2009JD013462

    Article  Google Scholar 

  • Pathak B, Bhuyan PK, Gogoi MM, Bhuyan K (2012) Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmos Environ. doi:10.1016/j.atmosenv.2011.10.061

    Google Scholar 

  • Pathak B, Bhuyan PK, Biswas J, Takemura T (2013) Long term climatology of particulate matter and associated microphysical and optical properties over Dibrugarh, North-East India and inter-comparison with SPRINTARS simulations. Atmos Environ. doi:10.1016/j.atmosenv.2012.12.032

    Google Scholar 

  • Pathak B, Bhuyan PK (2014) Absorbing and scattering properties of boundary layer aerosols over Dibrugarh, North East India. Int J Remote Sensing (in press)

  • Pochanart P, Hirokawa J, Kajii Y, Akimoto H (1999) Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan. J Geophys Res 104(D3):3621–3631F

    Article  CAS  Google Scholar 

  • Reddy RR et al (2008) Measurements of surface ozone at semi arid site Anantapur (14.62°N, 77.65°E, 331 m asl) in India. J Atmos Chem 59:47–59

    Article  CAS  Google Scholar 

  • Reddy KK, Naja M, Ojha N, Mahesh P, Lal S (2012) Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. J Earth Syst Sci 121(4):911–922

    Article  CAS  Google Scholar 

  • Sarangi T, Naja M, Ojha N, Kumar R, Lal S, Venkataramani S, Kumar A, Sagar R, Chandola HC (2013) First simultaneous measurements of ozone, CO and NOy at a high altitude regional representative site in the central Himalayas. JGR. doi:10.1002/2013JD020631

    Google Scholar 

  • Seibert P et al (1994) Trajectory analysis of aerosol measurements at high Alpine sites. In: Borrell PM, Borrell P, Cvitas T, Seiler W (eds) Transport and transformation of pollutants in the troposphere. Academic, The Hague, pp 689–693

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley-Interscience, Hoboken. ISBN 13:978-0-471-72018-8

  • Sioris A, Bottenheim JW (1995) Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujil National Park, Nova Scotia. J Geophys Res 100:2867–2881

    Article  Google Scholar 

  • Solomon P, Cowling E, Hidy G, Furiness C (2000) Comparison of scientific findings from major ozone field studies in North America and Europe. Atmos Environ 34:1885–1920

    Article  CAS  Google Scholar 

  • Song F, Shin JY, Atresino RJ, Gao Y (2011) Relationships among the springtime ground-level NOx, O3 and NO3 in the vicinity of highways in the US East coast. Atmos Pollut Res 2:374–383

    CAS  Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science 256:1157–1165

    Article  CAS  Google Scholar 

  • Tsai DH, Wang JL, Wang CH, Chan CC (2007) A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. Journal of environmental monitoring. doi:10.1039/b714479b

    Google Scholar 

  • Tu J, Xia Z-G, Wang H, Li W (2007) Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos Res 85:310–337

    Article  CAS  Google Scholar 

  • Vaughan JM, Maryon RH, Geddes NJ (2002) Comparison of atmospheric aerosol backscattering and air mass back trajectories. Meteorog Atmos Phys 79:33e46

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58:236–244

    Article  Google Scholar 

  • WHO (2000) Guidelines for air quality. World Health Organization, Geneva, 190

    Google Scholar 

Download references

Acknowledgments

The financial support for the work is partially provided by the Government of Assam and Indian Space Research Organisation—Geosphere Biosphere Program under the Atmospheric Trace Gases—Chemistry, Transport and Modeling project. Chandrakala Bharali and Gayatry Kalita are indebted to the ISRO for providing them fellowships under the project. Binita Pathak is thankful to the Department of Science and Technology, Government of India for financial support. The authors are grateful to the anonymous reviewers for their constructive suggestions toward improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Kumar Bhuyan.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhuyan, P.K., Bharali, C., Pathak, B. et al. The role of precursor gases and meteorology on temporal evolution of O3 at a tropical location in northeast India. Environ Sci Pollut Res 21, 6696–6713 (2014). https://doi.org/10.1007/s11356-014-2587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2587-3

Keywords

Navigation