Skip to main content

Advertisement

Log in

Source identification of inorganic airborne particle fraction (PM10) at ultratrace levels by means of INAA short irradiation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many studies have focused their attention on the determination of elements of toxicological and environmental interest in atmospheric particulate matter using analytical techniques requiring chemical treatments. The instrumental nuclear activation analysis technique allows achieving high sensitivity, good precision, and excellent limit of detection without pretreatment, also considering the problems related to the radioisotope characteristics (e.g., half-life time, interfering reactions, spectral interferences). In this paper, elements such as Al, As, Br, Cl, Cu, I, La, Mg, Mn, Na, Sb, Si, Ti, and V are studied in atmospheric PM10 sampled in downtown Rome: The relative radionuclides after activation of the sample are characterized by very short (ranging from 2.24 to 37.2 min) and short (ranging from 2.58 h to 2.70 days) half-lives. Furthermore, As, Br, La, Mn, and Sb were also determined for evaluating the aerosol characteristics. The results, elaborated considering the matrix effects and the interfering reaction contribution to the radioisotope formation (e.g., 28Al generated by both (n,γ) reaction from 27Al and (n,p) reaction from 28Si), show interesting values of As (0.3–6.1 ng m−3), Cu (22–313 ng m−3), Mn (17–125 ng m−3), V (7–63 ng m−3), higher than those determined in an area not influenced by autovehicular traffic, and significant levels of I (1–11 ng m−3) and Ti (25–659 ng m−3) in Rome PM10. The other elements show a pattern similar to the very few data present in the literature. It should be underlined the good correlation (r 2) of Al vs. Mg (0.915) and Al vs. La (0.726), indicating a same sources for these species as well as Br–Sb showing a little lower correlation (0.623). This last hypothesis is confirmed by the study of the enrichment factors: Sb and Br may be attributed to anthropogenic sources; Cu, Cl, and I show a mixed origin (natural and anthropogenic), whereas Al, Si, Ti, Mn, Na, Mg, and As are of crustal origin. For having more information, a statistical approach based on the principal component analysis and the canonical discriminant analysis has been performed: All the samples (except one) are grouped in a cluster, and elements such as As, Br, Cu, I, La, Mn, Sb, Ti, and V are highly correlated, whereas Na and Cl and Mg and Al assemble in two different clusters. Finally, a comparison with other similar studies is reported showing interesting values for Al, As, Mg, Mn, and Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo J-C (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96:612–625

    Article  CAS  Google Scholar 

  • Almeida SM, Freitas MC, Reis M, Pinheiro T, Felix PM, Pio CA (2013) Fifteen years of nuclear techniques application to suspended particulate matter studies. J Radioanal Nucl Chem 297:347–356

    Article  CAS  Google Scholar 

  • Ansari AS, Pandis SN (1999) Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos Environ 33:745–757

    Article  CAS  Google Scholar 

  • Avino P, Manigrasso M (2008) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42:4138–4148

    Article  CAS  Google Scholar 

  • Avino P, Carconi PL, Lepore L, Moauro A (2000) Nutritional and environmental properties of algal products used in healthy diet by INAA and ICP-AES. J Radioanal Nucl Chem 244:247–252

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Rosada A (2006) Characterization and distribution of mineral content in fine and coarse airborne particle fractions by neutron activation analysis. Toxicol Environ Chem 88:633–647

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Rosada A (2008) Heavy metal determination in atmospheric particulate matter by instrumental neutron activation analysis. Microchem J 88:97–106

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Diaco L, Rosada A (2010) Multivariate analysis applied to trace and ultra-trace elements in Italian potable waters determined by INAA. Curr Anal Chem 6:26–36

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Rosada A (2011a) Ultra-trace nutritional and toxicological elements in Rome and Florence drinking waters determined by instrumental neutron activation analysis. Microchem J 97:144–153

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Manigrasso M, Sabbioni E, Rosada A (2011b) Element assessment in whole blood, serum and urine of three Italian healthy sub-populations by INAA. Microchem J 99:548–555

    Article  CAS  Google Scholar 

  • Avino P, Capannesi G, Renzi L, Rosada A (2013) Instrumental neutron activation analysis and statistical approach for determining baseline values of essential and toxic elements in hairs of high school students. Ecotoxicol Environ Saf 92:206–214

    Article  CAS  Google Scholar 

  • Barksdale J (1968) Titanium. In: Clifford A, Hampel A (eds) The encyclopedia of the chemical elements. Reinhold Book Corporation, New York, pp 732–738, LCCN 68-29938

    Google Scholar 

  • Bergamaschi L, Rizzio E, Valcuvia MG, Verza G, Profumo A, Gallorini M (2002) Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens. Environ Pollut 120:137–144

    Article  CAS  Google Scholar 

  • Bruno F, Capannesi G, Gratani L, Manes F (1980) Characterization of mineral content in Quercus ilex leaves by photon and neutron activation analysis (Castelporziano, Rome). G Bot Ital 114:175–186

    Article  CAS  Google Scholar 

  • Buonanno G, Stabile L, Avino P, Vanoli R (2010) Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant. Waste Manag 30:1325–1333

    Google Scholar 

  • Buonanno G, Stabile L, Avino P, Belluso E (2011) Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manag 31:2253–2262

    Google Scholar 

  • Campanella L, Crescentini G, Avino P, Moauro A (1998) Determination of macrominerals and trace elements in the alga Spirulina platensis. Analusis 26:210–214

    Article  CAS  Google Scholar 

  • Canepari S, Pietrodangelo A, Perrino C, Astolfi ML, Marzo ML (2009) Enhancement of source traceability of atmospheric PM by elemental chemical fractionation. Atmos Environ 43:4754–4765

    Article  CAS  Google Scholar 

  • Capannesi G, Mastinu G (1978) Trace elements in air particulates from 1965 to 1978. CNEN Report RT/AMB (79)10:1–27.

  • Capannesi G, Diaco L, Rosada A, Avino P (2008) Investigation of trace and ultra-trace elements of nutritional and toxicological significance in Italian potable waters by INAA. J Radioanal Nucl Chem 278:353–357

    Article  CAS  Google Scholar 

  • Capannesi G, Rosada A, Avino P (2009) Elemental characterization of impurities at trace and ultra-trace levels in metallurgical lead samples by INAA. Microchem J 93:188–194

    Article  CAS  Google Scholar 

  • Capannesi G, Rosada A, Manigrasso M, Avino P (2012) Rare earth elements, thorium and uranium in ores of the North-Latium (Italy). J Radioanal Nucl Chem 291:163–168

    Article  CAS  Google Scholar 

  • Carvalho AOM, Freitas MC (2011) Airborne chemical elements: implications on human health and accumulation in lichens. Int J Environ Health 5:134–147

    Article  CAS  Google Scholar 

  • Cecinato A (1999) Atmospheric PAH in Italy: experience and concentration levels. Fresenius Environ Bull 8:586–594

    CAS  Google Scholar 

  • Chen Z, Huang C-Y, Zhao M, Yan W, Chien C-W, Chen M, Yang H, Machiyama H, Lin S (2011) Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea. J Asian Earth Sci 40:363–370

    Article  Google Scholar 

  • Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, Sioutas C (2011) Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos Environ 45:2651–2662

    Article  CAS  Google Scholar 

  • Cocheo V (2000) Agenti inquinanti e sorgenti dell'inquinamento atmosferico urbano. Ann Ist Sup San 36:267–279

    CAS  Google Scholar 

  • Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  • Della Ventura G, Bellatreccia F, Caprilli E, Rossi P, Fiori S (1999) Minerali di vanadio nei proietti sienitici del Lazio: la vanadinite di Monte Cavalluccio, Campagnano (Roma). Rend Acc Naz Lincei 10:81–87

    Article  Google Scholar 

  • Dongarrà G, Manno E, Varrica D, Lombardo M, Vultaggio M (2010) Study on ambient concentrations of PM10, p M10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos Environ 44:5244–5257

    Article  Google Scholar 

  • Dulka JJ, Risby TH (1976) Ultratrace metals in some environmental and biological systems. Anal Chem 48:640A–653A

    Article  CAS  Google Scholar 

  • Emsley J (2001) Titanium. Nature's building blocks: an A–Z guide to the elements. Oxford University Press, Oxford. ISBN 0-19-850340-7

    Google Scholar 

  • Erdtmann G, Soyka W (1988) The gamma rays of the radionuclides. Wiley-VCH, New York. ISBN 3527258167

    Google Scholar 

  • European Standard 123241 (1998) Air quality—determination of the PM10 fraction of suspended particulate matter—reference method and field test procedure to demonstrate reference equivalence of measurements methods. European Commision, Strasbourg

  • Fanizza C, Capannesi G, Rosada A, Manigrasso M, Avino P (2008) Rare earth elements in atmospheric PM10: analytical and toxicological implications. Toxicol Lett 180S:S178

    Article  Google Scholar 

  • Felig P, Frohman LA (2001) Endemic goiter, Endocrinology & metabolism. McGraw-Hill Professional, New York. ISBN 9780070220010

    Google Scholar 

  • Gallorini M, Muntau H (1995) Materiali di riferimento e analisi di elementi in traccia. Ann Ist Sup San 31:255–263

    CAS  Google Scholar 

  • Gao Y, Sun M, Wu X, Liu Y, Guo Y, Wu J (2010) Concentration characteristics of bromine and iodine in aerosols in Shanghai, China. Atmos Environ 44:4298–4302

    Article  CAS  Google Scholar 

  • Gaudry A, Moskura M, Mariet C, Ayrault S, Denayer F, Bernard N (2008) Inorganic pollution in PM10 particles collected over three French sites under various influences: rural conditions, traffic and industry. Water Air Soil Pollut 193:91–106

    Article  CAS  Google Scholar 

  • Gobbi GP, Angelini F, Barnaba F, Costabile F, Baldasano JM, Basart S, Sozzi R, Bolignano A (2013) Changes in particulate matter physical properties during Saharan advections over Rome (Italy): a four-year study, 2001–2004. Atmos Chem Phys 13:7395–7404

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford. ISBN 0080379419

    Google Scholar 

  • Halek F, Keyanpour-Rad M, Darbani RM, Kavousirahim A (2010) Concentrations and source assessment of some atmospheric trace elements in Northwestern region of Tehran, Iran. Bull Environ Contam Toxicol 84:185–190

    Article  CAS  Google Scholar 

  • Harrison RM, Sturges WT (1984) Physico-chemical speciation and transformation reactions of particulate atmospheric nitrogen and sulphur compounds. Atmos Environ 18:1829–1833

    Article  CAS  Google Scholar 

  • Hetherington LE, Brown TJ, Benham AJ, Lusty PAJ, Idoine NE (2007) World mineral production: 2001–2005. British Geological Survey. ISBN 978-0-85272-592-4 (available at www.bgs.ac.uk/downloads/start.cfm?id=1417)

  • Koski TA, Stuart LS, Ortenzio LF (1966) Comparison of chlorine, bromine, iodine as disinfectants for swimming pool water. Appl Microbiol 14:276–279

    CAS  Google Scholar 

  • Krebs RE (2006) The history and use of our earth's chemical elements: a reference guide, 2nd edn. Greenwood, Westport. ISBN 0313334382

    Google Scholar 

  • Kroll A, Gietl JK, Wiesmüller GA, Günsel A, Wohlleben W, Schnekenburger J, Klemm O (2013) In vitro toxicology of ambient particulate matter: correlation of cellular effects with particle size and components. Environ Toxicol 28:76–86

    Article  CAS  Google Scholar 

  • Laborda F, Baxter MJ, Crews HM, Dennis J (1994) Reduction of polyatomic interferences in inductively coupled plasma mass spectrometry by selection of instrumental parameters and using an argon–nitrogen plasma: effect on multi-element analyses. J Anal At Spectrom 9:727–736

    Article  CAS  Google Scholar 

  • Lahmann E, Munari S, Amicarelli V, Abbaticchio P (1986) Heavy metals: identification of air quality and environmental problems in the European Community. Luxembourg, Commission of the European Communities, vols 1 and 2 (Report No. EUR 10678 EN/I and EUR 10678 EN/II)

  • Leclerc JC, Cornu A (1989) Neutron activation analysis table. Heyden, London. ISBN 0855010851

    Google Scholar 

  • Lide DR (2005) CRC handbook of chemistry and physics, 86th edn. CRC, Boca Raton. ISBN 0-8493-0486-5

    Google Scholar 

  • Locardi E, Mittempergher M (1967) Relationship between some trace elements and magmatic processes. Int J Earth Sci 57:313–334

    CAS  Google Scholar 

  • Lyle JP, Granger DA, Sanders RE (2005) Aluminum alloys, Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a01 481

    Google Scholar 

  • Manigrasso M, Avino P (2009) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42:4138–4148

    Google Scholar 

  • Manigrasso M, Abballe F, Jack RF, Avino P (2010) Time-resolved measurement of the ionic fraction of atmospheric fine particulate matter. J Chromatogr Sci 48:549–552

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Ceccato D, Rampazzo G, Pavoni B (2012) A chemometric approach to determine local and regional sources of PM10 and its geochemical composition in a coastal area. Atmos Environ 54:127–133

    Article  CAS  Google Scholar 

  • Mason B, Moore CM (1982) Principles of geochemistry, 4th edn. Wiley, New York, p 344

    Google Scholar 

  • Michelozzi P, Forasteriere F, Fusco D, Perucci CA, Ostro B, Ancona C, Pallotti G (1998) Air pollution and daily mortality in Rome, Italy. Occup Environ Med 55:605–610

    Article  CAS  Google Scholar 

  • Misaelides P, Samara C, Noli F, Kouimtzis T, Anou I (1993) Toxic element concentrations in airborne particulate matter in the area of Thessaloniki, Greece. Sci Total Environ 130:139–146

    Article  Google Scholar 

  • Moiseyev VN (2006) Titanium alloys: Russian aircraft and aerospace applications. Taylor and Francis, London, p 196. ISBN 9780849332739

    Google Scholar 

  • Monod A, Sive BC, Avino P, Chen T, Blake DR, Rowland FS (2001) Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ 35:135–149

    Article  CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Reche C, Cusack M, Amato F, Pandolfi M, Pey J, Richard A, Prévôt ASH, Furger M, Gibbons W (2011) Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos Chem Phys 11:9415–9430

    Article  CAS  Google Scholar 

  • Müller K (1999) A 3 year study of the aerosol in northwest Saxony (Germany). Atmos Environ 33:1679–1685

    Article  Google Scholar 

  • Pakkanen TA (1996) Study of coarse particles nitrate aerosol. Atmos Environ 30:2475–2482

    Article  CAS  Google Scholar 

  • Park SH, Song CB, Kim MC, Kwon SB, Lee KW (2004) Study on size distribution of total aerosol and water soluble ions during an Asian dust storm event at Jeju Island, Korea. Environ Monit Assess 93:157–183

    Article  CAS  Google Scholar 

  • Pey J, Querol X, Alastuey A (2010) Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmos Environ 44:1587–1596

    Article  CAS  Google Scholar 

  • Platzner I, Sala JV, Mousty F, Trincherini PR, Polettini AL (1994) Signal enhancement and reduction of interferences in inductively coupled plasma mass spectrometry with an argon–trifluoromethane mixed aerosol carrier gas. J Anal At Spectrom 9:719–726

    Article  CAS  Google Scholar 

  • Reed NM, Cairns RO, Hutton RC (1994) Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer. J Anal At Spectrom 9:88–896

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64. ISBN 0-08-044338-9

    Chapter  Google Scholar 

  • Seccaroni C, Volante N, Rosada A, Ambrosone L, Bufalo G, Avino P (2008) Identification of provenance of obsidian samples analyzing elemental composition by INAA. J Radioanal Nucl Chem 278:277–282

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change, 2nd edn. Wiley, New York. ISBN 0471720186

    Google Scholar 

  • Smodiš B, Bleise A (2007) IAEA quality control study on determining trace elements in biological matrices for air pollution research. J Radioanal Nucl Chem 271:269–274

    Article  Google Scholar 

  • Tan SH, Horlick G (1986) Background spectral features in inductively coupled plasma/mass spectrometry. Appl Spectrosc 40:445–460

    Article  CAS  Google Scholar 

  • Tanagra (2013) http://chirouble.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html. Accessed on 28 June 2013

  • Terzi E, Argyropoulos G, Bougatioti A, Mihalopoulos N, Nikolaou K, Samara C (2010) Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ 44:2231–2239

    Article  CAS  Google Scholar 

  • Theodosi C, Im U, Bougiatioti A, Zarmpas P, Yenigun O, Mihalopoulos N (2010) Aerosol chemical composition over Istanbul. Sci Total Environ 408:2482–2491

    Article  CAS  Google Scholar 

  • Titanium (2006) The Columbia encyclopedia, 6th edn. Columbia University Press, New York. ISBN 0-7876-5015-3

    Google Scholar 

  • Verburg TG, Sarmento SM, Wolterbeek HT (2010) Statistical approaches in environmental epidemiology. In: Lahiri S (ed) Advanced trace analysis. Alpha Science International, Oxford, pp 1–73. ISBN 1842655914

    Google Scholar 

  • von Schneidemesser E, Stone EA, Quraishi TA, Shafer MM, Schauer JJ (2010) Toxic metals in the atmosphere in Lahore, Pakistan. Sci Total Environ 408:1640–1648

    Article  Google Scholar 

  • Wang C, Wang J, Yang Z, Mao C, Ji J (2013) Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock-pedosphere-irrigated riverwater-cereal-atmosphere from the Yangtze River delta region, China. Chemosphere 93:1927–1935. doi:10.1016/j.chemosphere.2013.06.073

    Article  CAS  Google Scholar 

  • Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic, New York. ISBN: 0123526515.

  • World Health Organization (2000) Air quality guidelines for Europe, 2nd edn. WHO Regional Publications, European Series, No. 91. ISBN: 92-890-1358-3

Download references

Acknowledgments

This research was performed under the grant INAIL/P20L01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Avino.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Efficiency calibration curve (JPEG 19 kb)

High Resolution Imaging (TIFF 10 kb)

Figure 2

Typical spectrum of first series of measurements of short-lived radionuclides determined in PM10 sample. Peak identification: 1 51Ti; 2 128I; 3 76As; 4 80Br; 5 80Br; 6 82Br; 7 56Mn; 8 27Mg; 9 66Cu; 10 29Al(Si); 11 24Na; 12 52V; 13 38Cl; 14 28Al; 15 56Mn; asterisk e+ + e (annihilation) (JPEG 32 kb)

High Resolution Imaging (TIFF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avino, P., Capannesi, G. & Rosada, A. Source identification of inorganic airborne particle fraction (PM10) at ultratrace levels by means of INAA short irradiation. Environ Sci Pollut Res 21, 4527–4538 (2014). https://doi.org/10.1007/s11356-013-2418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2418-y

Keywords

Navigation