Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13208–13214 | Cite as

TXRF analysis of soils and sediments to assess environmental contamination

  • Fabjola Bilo
  • Laura Borgese
  • Davide Cazzago
  • Annalisa Zacco
  • Elza Bontempi
  • Rita Guarneri
  • Marco Bernardello
  • Silvia Attuati
  • Pranvera Lazo
  • Laura E. Depero
Chemistry in a sustainable society

Abstract

Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.

Keywords

Environment Soil Sediment Heavy metals TXRF FAAS ICP-OES 

References

  1. Ancion PY (2013) Metal concentration in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environ Pollut 173:117–124CrossRefGoogle Scholar
  2. Bontempi E, Zacco A, Borgese L (2010a) A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12:2093–2099. doi:10.1039/c0em00168f CrossRefGoogle Scholar
  3. Bontempi E, Zacco A, Benedetti D, Borgese L, Colombi P, Stosnach H, Finzi G, Apostoli P, Buttini P, Depero LE (2010b) Total reflection x-ray fluorescence (TXRF) for direct analysis of aerosol particle samples. Environm Techn 31:467–477CrossRefGoogle Scholar
  4. Borgese L, Bontempi E, Zacco A, Colombi P, Bertuzzi R, Ferretti E, Tenini S, Depero LE (2009) Total reflection x-ray fluorescence (TXRF): a mature technique for environmental chemical nanoscale metrology. IOP Publishing, Measurm Sci & Techn. doi:10.1088/0957-0233/20/8/084027, 20Google Scholar
  5. Borgese L, Zacco A, Bontempi E, Pellegatta M, Vigna L, Patrini L, Riboldi L, Rubino MF, Depero EL (2010) Use of total reflection x-ray fluorescence (TXRF) for the evaluation of heavy metal poisoning due to the improper use of a traditional ayurvedic drug. J Pharma and Biomed Anal 52:787–790. doi:10.1016/j.jpba CrossRefGoogle Scholar
  6. Borgese L, Zacco A, Pal S (2011) A new non-destructive method for chemical analysis of particulate matter filters: the case of manganese air pollution in Vallecamonica (Italy). TALANTA 84:192–198. doi:10.1016/j.talanta.2010.12.048 CrossRefGoogle Scholar
  7. Borgese L, Salmistraro M, Gianoncelli A, Zacco A, Lucchini R, Zimmerman N, Pisani L, Siviero G, Depero EL, Bontempi E (2012) Airborne particulate matter (PM) filter analysis and modeling by total reflection x-ray fluorescence (TXRF) and x-ray standing wave (XSW). Talanta 89:99–104CrossRefGoogle Scholar
  8. Borgese L, Federici S, Zacco A, Gianoncelli A, Rizzo L, Smith RD, Donna F, Lucchini R, Depero LE, Bontempi E (2013) Metal fraction in soils and assessment of environmental contamination in Vallecamonica Italy. Environ Sci Pollut Res 10:1007Google Scholar
  9. Butler OT, Cairns WRL, Cook JM, Davidson CM (2012) Atomic spectroscopy update. Environmental analysis. J Anal Atom Spectrom 27:187–221. doi:10.1039/c1ja90057 CrossRefGoogle Scholar
  10. Canadian Council of Ministers of the Environment (CCME) (1999) in: Canadian Environmental Quality Guidelines, CanadaGoogle Scholar
  11. Cataldo F (2012) Multielement analysis of a municipal landfill leachate with total reflection x-ray fluorescence (TXRF). A comparison with ICP-OES analytical results. J Radionanal Nucl Chem 293:119–126. doi:10.1007/s10967-012-1777-z CrossRefGoogle Scholar
  12. Danel A, Kohno H, Veillerot M, Cabuil N, Lardin T, Despois D, Geoffrey C (2008) Comparison of direct-total reflection x-ray fluorescence, sweeping- total reflection x-ray fluorescence and vapor phase decomposition total reflection x-ray fluorescence applied to the characterization of metallic contamination on semiconductor. Spectrochim Acta Part B-Atom Spectroscopy 63:1375–1381CrossRefGoogle Scholar
  13. De Caritat P, Reimann C, NGSA Project Team and GEMAS Project Team (2012) Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values. Earth Planet Sci Lett 319–320:269–276CrossRefGoogle Scholar
  14. ESDAT 2000 Dutch target and intervention values. www.esdat.net. Accessed July 2013
  15. Espinoza-Quinones FR (2010) Water quality assessment of Toledo river and determination of metal concentration. J Radional Nucl Chem 283:465–470CrossRefGoogle Scholar
  16. Espinoza-Quińones FR, Módenes AN, Palácio SM, Lorenz EK, Oliveira AP (2011) Analysis of metal concentration levels in water, sediment and fish tissues from Toledo municipal lake by applying SR-TXRF technique. Water Sci Technol 63(1506):37. doi:10.2166/wst.2011.396 Google Scholar
  17. Giri B, Patel KS, Jaiswal NK, Sharma S et al (2013) Composition and sources of organic tracers in aerosol particles of industrial central India. Athmosph Res 120:312–324. doi:10.1016/j.atmosres.2012.09.016 CrossRefGoogle Scholar
  18. Kabata Pendias A, Pendias (2001) Environmental biogeochemistry—outline of the development. Prz Geol 49:957–959Google Scholar
  19. Kamala-Kannan S, Dass Batvari BP, Lee KJ, Kannan N et al (2008) Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake. South East India Chemosphere 71:1233–1240Google Scholar
  20. Lattuada RM, Menezes CTB, Pavei PT, Peralba MCR, Dos Santos JHZ (2009) Determination of metals by total reflection x-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brasil. J Hazard Materials 163:531–537CrossRefGoogle Scholar
  21. Margui E, Tapias JC, Casas A, Hidalgo M, Queralt I (2010a) Analysis of inlet and outlet industrial wastewater effluents by means of a bench-top total reflection x-ray fluorescence. Chemosphere 80:263–270CrossRefGoogle Scholar
  22. Margui E, Kregsamer P, Hidalgo M, Tapias J, Queralt I, Streli C (2010b) Analytical approaches for Hg determination in wastewater samples by means of total reflection x-ray fluorescence spectrometry. Talanta 82:821–827CrossRefGoogle Scholar
  23. Margui E, Floor GH, Hidalgo M (2010c) Analytical possibilities of total reflection x-ray spectrometry (TXRF) for trace selenium determination in soils. Anal Chem 82:7744–7751. doi:10.1021/ac101615w CrossRefGoogle Scholar
  24. Martinez T, Lartigue J, Zarazua G, Avila-Perez P, Navarrete M, Tejeda S (2008) Application of total reflection x-ray fluorescence technique to trace elements determination in tobacco. Spectrochim Acta Part B: Atomic Spectroscopy 63:1469–1472CrossRefGoogle Scholar
  25. Montero Alvarez A, Estévez Alvarez JR, Padilla Alvarez R (2007) Heavy metals analysis of rainwater: a comparison of TXRF and ASV analytical capabilities. J Radioanal Nucl Chem 273:427–433. doi:10.1007/s10967-007-6895-7 CrossRefGoogle Scholar
  26. Moreira S, Fazza EV (2008) Evaluation of water and sediment of the Graminha and Aguas da Serra streams in the city of Limeira (Sp-Brazil) by synchrotron radiation total reflection x-ray fluorescence. Spectrochim Acta Part B-Atom Spectroscopy 63:1432–1444. doi:10.1016/j.sab.2008.10.022 CrossRefGoogle Scholar
  27. Necemer M, Kump P, Scancar J (2008) Application of x-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim Acta Part B-Atom Specrtoscop 63:1240–1247. doi:10.1016/j.sab.2008.07.006 CrossRefGoogle Scholar
  28. Opfer ES, Farver RJ, Miner GJ, Kriger K (2011) Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin. Jof Great Lake Research 37:1–8CrossRefGoogle Scholar
  29. Patel KS, Shrivas K, Brandt R, Jakubowski N et al (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–154. doi:10.1007/s10653-005-0120-9 CrossRefGoogle Scholar
  30. Patel KS, Shrivas K, Hoffmann P, Jakubowski N, Patel RK (2006) A survey of lead pollution in Chhattisgarh State. Central India, Environ Geochem Health 28:11–17. doi:10.1007/s10653-005-9006-0 CrossRefGoogle Scholar
  31. Patel VS, Verma A, Jaiswal NK, Sahu BL, Shrivas K, Raab A, Feldmann J, Borgese L, Gianoncelli A, Bontempi E, Lautent M, Bhattacharya P (2012) Arsenic concentration in soil, rice and straw in central India, Understanding the Geological and Medical Interface of Arsenic, 4th International Congress: Arsenic in the Environment, 508–509Google Scholar
  32. Perez Avila P, Tejeda S (2007) Evaluation of distribution and bioavailability of Cr, Mn, Fe, Cu, Zn and Pb in the waters of the upper course of the Lerma River. X-Ray Spectrom 36:361–368CrossRefGoogle Scholar
  33. Rashid SA, Masoodi A, Khan FA (2013) Sediment-water interaction at higher altitudes: example from the geochemistry of Wular Lake sediments. Kashmir Valley, northern India. Procedia Earth and Planetary Science 7:786–789CrossRefGoogle Scholar
  34. Reimann C, De Caritat P (2005) Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337:91–107CrossRefGoogle Scholar
  35. Safarova IV, Shaidullina FG, Nikheeva NT, Kadusheva KF (2011) Methods of sample preparation of soil, botton sediments, and soil wastes for atomic absorption determination of heavy metals. Inorg Materials 47:1512–1517Google Scholar
  36. Sartore L, Barbaglio M, Borgese L, Bontempi E (2011) Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sensors Actuators B 155:538–544CrossRefGoogle Scholar
  37. Serbula SM (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf 76:209–214. doi:10.1016/j.ecoenv.2011.10.009 CrossRefGoogle Scholar
  38. Shuely AW, Ibrahim ZZ, Al- Kind A, Al-Saidi S, Kahn T (2009) Heavy metals content on beach sediments north and south of Sohar industrial area, Oman. J of Environ And Techn 2:73–79CrossRefGoogle Scholar
  39. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metals contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazardous Mat 174:113–121CrossRefGoogle Scholar
  40. Stosnach H (2005) Environmental trace element analysis using a benchtop total reflection x-ray fluorescence spectrometer. Anal Sci 21:873–876. doi:10.2116/analsci.21.873 CrossRefGoogle Scholar
  41. Stostnach H (2006) On-site analysis of heavy metal contaminated areas by means of total reflection x-ray fluorescence analysis (TXRF). Spectrochim Acta Part B: Atomic Spectroscopy 61:1141–1145. doi:10.1016/j.sab.2006.06.007 CrossRefGoogle Scholar
  42. Streli C (2006) Recent advances in TXRF. Appl Spectroscopy Reviews 41:473–489CrossRefGoogle Scholar
  43. Tavares GA, Almeida E, Oliveria JGG, Bendassoli JA, Nascimento Filho VF (2011) Elemental content in deionized water by total reflection x-ray fluorescence spectroscopy. J Radioanal Nucl Chem 287:377–381CrossRefGoogle Scholar
  44. Waheed S (2010) Assessing soil pollution from a municipal waste dump in Islamabad, Pakistan, a study by INAA and AAS. J Radional Nucl Chem 285:723–732CrossRefGoogle Scholar
  45. West M, Ellis AT, Potts PJ (2011) Atomic spectrometry update—x-ray fluorescence spectrometry. J Anal Atom Spectrochem 26:1919–1963. doi:10.1039/c1ja90038b CrossRefGoogle Scholar
  46. Wisconsin Departmental of Natural Resources (2003). Consensus based sediment quality guidelines. Recommendations for use and application. Department of Interior, Washington DC 20240 pp 17Google Scholar
  47. Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dust, agriculture soils from China. Microchem J 94:99–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabjola Bilo
    • 1
  • Laura Borgese
    • 1
  • Davide Cazzago
    • 1
  • Annalisa Zacco
    • 1
  • Elza Bontempi
    • 1
  • Rita Guarneri
    • 2
  • Marco Bernardello
    • 2
  • Silvia Attuati
    • 2
  • Pranvera Lazo
    • 3
  • Laura E. Depero
    • 1
  1. 1.Dipartimento di Ingegneria Meccanica e IndustrialeUniversità di BresciaBresciaItaly
  2. 2.ARPA Lombardia settore laboratory U.O. Laboratorio di BresciaBresciaItaly
  3. 3.Department of Analytical Chemistry, Faculty of Natural ScienceUniversity of TiranaTiranaAlbania

Personalised recommendations