Environmental Science and Pollution Research

, Volume 21, Issue 11, pp 6783–6792 | Cite as

Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain)

  • Fernando Rull
  • Julia Guerrero
  • Gloria Venegas
  • Fernando Gázquez
  • Jesús Medina
Using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale


Acidic waters and sulphate-rich precipitates are typical by-products of mining activity such as in Rio Tinto (Huelva, SW Spain). This river drains pyrite mines situated in the Iberian Pyrite Belt which have been in operation since the Bronze Age and probably constitutes the oldest continuously operating mining activity over the world. In the present work, we have used Raman spectroscopy to study a wide range of natural mineral samples collected at Rio Tinto which origin is related to evaporation and mineral transformation processes in a wet and extreme acidic environment. In addition, we simulated the phenomenon of mineral precipitation in controlled conditions by using a simulator developed at the laboratory evaporating natural water collected at Rio Tinto. Also, a series of experiments using the same waters as small droplets have been carried out using micro-Raman technique. The droplets were placed on substrates with different chemical composition and reactivity. The results reveal that the precipitation sequence occurred in Rio Tinto mainly comprises copiapite and coquimbite group minerals followed by several other low hydrated iron sulphates. The experiments carried out on droplets allow estimating with higher accuracy the precipitation sequence.


Rio Tinto Raman spectroscopy Acidic mine drainage (AMD) Mineral precipitation sequence 



This work has been carried out under support of the UMBRELLA Project (7th Framework Programme of the European Union), FP7-ENV-2008-1/ 226870


  1. Allen SK, Allen JM, Lucas S (1996) Concentrations of contaminants in surface water samples collected in west-central Indiana impacted by acidic mine drainage. Environ Geol 27:34–37CrossRefGoogle Scholar
  2. Amaral Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sogin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209CrossRefGoogle Scholar
  3. Amils R, González-Toril E, Fernández-Remolar D, Gómez R, Rodríguez N, Durán C (2002) Interaction of the sulphur and iron cycles in the Tinto River ecosystem. Re/Views in Environ Sci Bio/Technoly 1:299–309CrossRefGoogle Scholar
  4. Boulter CA (1996) Extensional tectonics and magmatism as drivers of convection leading to Iberian Pyrite Belt massive sulphide deposits? J Geol Soc 153:181–184CrossRefGoogle Scholar
  5. Chen H, Irish DE (1971) A Raman spectral study of bisulphate-sulphate systems, III. Salt effects. J Phys Chem 75(17):2681–2684CrossRefGoogle Scholar
  6. Chio CH, Sharma SK, Muenow DW (2005) Micro-Raman studies of hydrous ferrous sulphates and jarosites. Spectrochim Acta A 61(10):2281–2287CrossRefGoogle Scholar
  7. Fernandez-Remolar D, Gomez-Elvira J, Gomez F, Sebastian E, Martin J, Manfredi JA, Torres J, Gonzalez Kesler C, Amils R (2004) The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planet Space Sci 52:239–248CrossRefGoogle Scholar
  8. Fernandez-Remolar D, Morris R, Gruener JE, Amils R, Knoll AH (2005) The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167CrossRefGoogle Scholar
  9. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865CrossRefGoogle Scholar
  10. Guerrero J, Navarro R, Sansano A, Medina J, Sanz A, Martínez Frías J, Rull F (2010) Caracterización mediante Espectroscopía Raman y LIBS de la Composición Geoquímica del Nacimiento del Rio Tinto. Sociedad Española de mineralogía. Macla 13:119–120Google Scholar
  11. Guerrero J, Navarro R, Sansano A, Medina J, Sanz A, Rull F (2011) Síntesis y Caracterización de Eflorescentes presentes en Río Tinto por Espectroscopía Raman y Difracción de RX. Sociedad Española de mineralogía. Macla 15:109–110Google Scholar
  12. Guerrero J (2012) Estudio espectroscópico y mineralógico de los sulphatos precipitados en Río Tinto a partir de aguas ácidas. Aplicaciones medioambientales. Tesis Doctoral. Servicio de publicaciones. Universidad de Valladolid 291 ppGoogle Scholar
  13. Klingelhöfer G, Rull F, Venegas G, Fleischer I, Martínez Frías J, Blumers M, Medina J, Sansano A, Navarro R, Henrich C (2011) In-situ mineralogical analysis with the miniaturised Mössbauer spectrometer MIMOS II and Raman Spectrometer at the terrestrial Martian analogues Rio Tinto and Jaroso Ravine. Workshop at Université Cady Ayyad, Ibn Battuta Centre, MoroccoGoogle Scholar
  14. Kong WG, Wang A, Freeman J, Sobron P (2011) A comprehensive spectroscopic study of synthetic Fe2+, Fe3+, Mg2+ and Al3+ copiapite by Raman, XRD, LIBS, MIR and vis–NIR. J Raman Spectrosc 42(5):1120–1129CrossRefGoogle Scholar
  15. Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue. Mineralium Deposita 33(1–2):2–30Google Scholar
  16. López-Archilla AI, Marín I, Amils R (1993) Bioleaching and interrelated acidophilic microorganisms from Río Tinto, Spain. Geomicrobiol J 11:223–233CrossRefGoogle Scholar
  17. López-Archilla AI, Marín I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol 41:20–35Google Scholar
  18. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New YorkGoogle Scholar
  19. Nordstrom DK, Southam G (1997) Geomicrobiology of sulphide mineral oxidation. In: Banfield JF, Nealson KH (eds.) Geomicrobiology: interactions between microbes and minerals. Rev Mineral Mineral Soc Am 35:361–390Google Scholar
  20. Rull F, Martinez-Frias J, Medina J (2005) Surface mineral analysis from two possible Martian analogs (Rio Tinto and Jaroso Ravine, Spain) using micro-, macro-, and remote laser Raman spectroscopy, European Geosciences Union. Geophys Res Abstr 7:09114Google Scholar
  21. Rull F, Fleischer I, Martinez-Frias J, Sanz A, Upadhyay C, Klingelhöfer G (2008) Raman and Mössbauer spectroscopic characterisation of sulphate minerals from the Mars analogue sites at Rio Tinto and Jaroso Ravine, Spain. 39th Lunar and Planetary Science Conference 1391:1616Google Scholar
  22. Rull F, Klingelhöfer G, Sansano A, Fleischer I, Sobrón P, Blumers M, Lafuente A, Schmanke D, Maul J (2009) In-situ micro-Raman and Mössbauer spectroscopic study of evaporate minerals in Rio Tinto (Spain): applications for planetary exploration. Conf Micro-Raman Spectrosc Luminescence Studies Earth Planet Sci 1473:68–69Google Scholar
  23. Sobrón P (2008) Acidic aqueous solutions and sulphate-rich mineralogy: Raman investigations of Rio Tinto, Spain, a model for acid mine drainage and a potential Martian analog. Doctoral Thesis. Servicio de publicaciones Universidad de ValladolidGoogle Scholar
  24. Sobrón P, Sanz A, Acosta T, Rull F (2009) A Raman spectral study of stream waters and efflorescent salts in Rio Tinto, Spain. Spectrochim Acta A 71(5):1678–1682CrossRefGoogle Scholar
  25. Stoker C, Lemke L, Mandell H, Mckay D, George J, Gomez-Elvira J, Amils R, Stevens T, Miller D (2003) Mars analog research and technology experiment (MARTE): a simulated Mars drilling mission to search for subsurface life at the Rio Tinto (Spain). Lunar Planet Sci XXXIV:1076.pdfGoogle Scholar
  26. Venegas G, Guerrero J, Sansano A, Sanz A, Rull F (2012) Raman study of mineralogical precipitation sequence of Rio Tinto “Mars analog”. European Planetary Science Congress 754Google Scholar
  27. Wang A, Freeman JJ, Jolliff BL, Chou IM (2006) Sulphates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulphates. Geochim Cosmochim Ac 70:6118–6135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fernando Rull
    • 1
    • 2
  • Julia Guerrero
    • 2
  • Gloria Venegas
    • 1
    • 2
  • Fernando Gázquez
    • 2
  • Jesús Medina
    • 1
    • 2
  1. 1.Unidad Asociada UVA-CSIC al Centro de AstrobiologíaValladolidSpain
  2. 2.Cristalografía y Mineralogía, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations