Skip to main content
Log in

Kinetics of dissolution processes in loess-like sediments and carbonate concretions in the southeast of the province of Buenos Aires, Argentina

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Pampeano aquifer formed by loess-like sediments provides water to cities and for agricultural uses in the Pampean plain, which is the most productive area in Argentina. Studies on the mechanisms through which this groundwater acquires its chemical composition are scarce and generally make assumption about equilibrium conditions. Few works on total sediments kinetics of mineral dissolution have been made. The main objective is to characterize ions incorporation to the groundwater of the Pampeano aquifer and to estimate the rate of the dissolution of the solid phase of the Pampeano sediments. This work also aims to provide evidence on the effect of particles size on water chemistry, and the changes in mineral structure during dissolution. The methodology included batch experiments on loess and calcrete during 10 h. The kinetics of ions incorporation into water presented variations depending on the types of sediments dissolving and the sizes of particles. Steady values were reached in the first minutes of reaction. Although the principal components of the Pampeano aquifer like calcite, quartz and aluminosilicates are known to have low dissolution coefficient, ions were incorporated fastly into water and saturation of solution appeared in the first minutes of the experiments. Saturation index (SI) calculated by PHREEQC also showed sensitivity to particles size. Observations with loupe and microscope showed modifications on the sediments appearance after batch reactions. For instance, porosity in calcrete increased. Increments in BET (Brunauer–Emmett–Teller) surface area and micropore surface area were measured. Significant changes in sediment chemistry measured by SEM/EDS were observed as well during dissolution processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alarcón-Herrera J, Bundschuh B, Nath HB, Nicolli M, Gutierrez M (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969. doi:10.1016/j.jhazmat.2012.08.005

    Article  Google Scholar 

  • Ameghino F (1880) La formación Pampeanoa o estudio sobre los terrenos de transporte de la Cuenca delPlata. G Masson, Paris

    Google Scholar 

  • Auge M, Hernández MA (1984) Características geohidrologicas de un acuífero semiconfinado en la llanura Bonarense. Coloquio Internacional de Grandes llanuras. UNESCO(III). Paris—Buenos Aires

  • Bocanegra EM (1993) Hydrogeochemical modeling of the process of salinization in Mar del Plata aquifer] Temas Actuales de la Hidrología Subterránea. Publishing Service of the Universidad Nacional De Mar Del Plata, Mar Del Plata, pp 349–360

    Google Scholar 

  • Bocanegra EM, Benavente M, Cionchi JL (1995) Mathematical simulation of chloride transport in Mar del Plata aquifer. Ser Correlación Geol UN Tucuman 11:25–32

    Google Scholar 

  • Brady PV, Walther JV (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at 25 °C. Geochim Cosmochim Acta 53:2823–2830. doi:10.1016/0016-7037(89)90160-9

    Article  Google Scholar 

  • Brady RV, Walther JV (1990) Kinetics of quartz dissolution at low temperatures. Chem Geol 82:253–264. doi:10.1016/0009-2541(90)90084-K

    Article  Google Scholar 

  • Brantley SL, Kubicki JD, White AF (2008) Kinetics of water-rock interaction, vol 168. Springer, New York. ISBN 978-0-387-73562-7

    Book  Google Scholar 

  • Cama J, Ganor J, Ayora C, Lasaga CA (2000) Smectite dissolution kinetics at 80°C and pH 8.8. Geochim Cosmochim Acta 64(15):2701–2717. doi:10.1016/S0016-7037(00)00378-1

    Article  Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282. doi:10.1016/0009-2541(89)90063-6

    Article  Google Scholar 

  • Critelli T, Marini L, Schott J, Mavromatis V, Apollaro C, Rinder T, De Rosa R, Oelkers EH (2014) Dissolution rates of actinolite and chlorite from a whole-rock experimental study of metabasalt dissolution from 2 ≤ pH ≤ 12 at 25 C. Chem Geol 390:100–108. doi:10.1016/j.chemgeo.2014.10.013

    Article  Google Scholar 

  • Critelli T, Marini L, Schott J, Mavromatis V, Apollaro C, Rinder T, Oelkers EH (2015) Dissolution rate of antigorite from a whole-rock experimental study of serpentinite dissolution from 2 < pH < 9 at 25 C: implications for carbon mitigation via enhanced serpentinite weathering. Appl Geochem 61:259–271. doi:10.1016/j.apgeochem.2015.06.004

    Article  Google Scholar 

  • Daval D, Hellmann R, Martinez I, Gangloff S, Guyot F (2013) Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. ChemGeol 351:245–256. doi:10.1016/j.chemgeo.2013.05.020

    Google Scholar 

  • Dixit S, Carroll SA (2007) Effect of solution saturation state and temperature on diopside dissolution. Geochem Trans 8:3. doi:10.1186/1467-4866-8-3

    Article  Google Scholar 

  • Dove PM (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim Cosmochim Acta 63:3715–3727. doi:10.1016/S0016-7037(99)00218-5

    Article  Google Scholar 

  • Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969. doi:10.1016/0016-7037(90)90431-J

    Article  Google Scholar 

  • Fagerlund G (1973) Determination of specific surface by the BET method. Mater Struct 6:239–245. doi:10.1016/0016-7037(90)90431-J

    Google Scholar 

  • Fagundo JR, Valdés JJ, Rodríguez JE (1996) Química del agua kárstica. Hidroquímica del Karst 1:13–212

    Google Scholar 

  • Fagundo JR, González P, Rodríguez M (2004) Aplicaciones de la cinética en la hidrogeología y el medio ambiente. Contribución a la Educación y la Protección Ambiental, La Habanna

    Google Scholar 

  • Garcia MG, Borgnino L, Bia G, Depetris P (2014) Mechanisms of arsenic and fluoride release from Chacopampean sediments (Argentina). Int J Environ Health 7(1):41–57. doi:10.1504/IJENVH.2014.060122

    Article  Google Scholar 

  • García MG, Lecomte KL, Stupar Y, Formica SM, Barrionuevo M, Vesco M, Gallará R, Ponce R (2012) Geochemistry and health aspects of F-rich mountainous stream sand groundwaters from sierras Pampeanas de Cordoba, Argentina. Environ Earth Sci 65:535–545

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals, and equilibrium. Harper & Row. Harper’s geoscience series, New York

    Google Scholar 

  • Gautier JM, Oelkers EH, Schott J (2001) Are quartz dissolution rates proportional to BET surface areas? Geochim Cosmochim Acta 65(7):1059–1070. doi:10.1016/S0016-7037(00)00570-6

    Article  Google Scholar 

  • Gomez ML, Martinez DE (2010) Municipal waste management and groundwater contamination processes in Córdoba Province, Argentina. Ambiente Água. Interdiscip J Appl Sci 5:28–46

    Article  Google Scholar 

  • Herrero AC, Fernández L (2008) De los ríos no me río: diagnóstico y reflexiones sobre las cuencas metropolitanas de Buenos Aires: Luján, Reconquista, Matanza-Riachuelo, de la Ciudad Autónoma de Buenos Aires y de la Zona Sur. Temas Grupo Editorial

  • Hodson ME (1998) Micropore surface area variation with grain size in unweathered alkali feldspars: implications for surface roughness and dissolution studies. Geochim Cosmochim Acta 62(21):3429–3435. doi:10.1016/S0016-7037(98)00244-0

    Article  Google Scholar 

  • House WA, Orr DR (1992) Investigation of the pH dependence of the kinetics of quartz dissolution at 25 C. J Chem Soc Faraday Trans 88(2):233–241. doi:10.1039/FT9928800233

    Article  Google Scholar 

  • Ingram RL (1971) Sieve analysis. In: Carver RE (ed) Procedures in Sedimentary Petrology. Wiley, New York, pp 49–67

    Google Scholar 

  • Kitano Y, Okumura M (1973) Coprecipitation of fluoride with calcium carbonate. Geochem J 7:37–49. doi:10.2343/geochemj.7.37

    Article  Google Scholar 

  • Kruse E, Ainchil J (2003) Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environ Geol 44:86–89. doi:10.1007/s00254-002-0702-0

    Google Scholar 

  • Luce RW, Bartlett WB, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochimicaet Cosmochimica Acta 36:35–50. doi:10.1016/0016-7037(72)90119-6

    Article  Google Scholar 

  • Lüttge A (2005) Etch pit coalescence, surface area, and overall mineral dissolution rates. Am Mineral 90:1776–1783. doi:10.2138/am.2005.1734

    Article  Google Scholar 

  • Martinez DE, Osterrieth MO (2013) Hydrochemistry of an aquifer in Quaternary loess like sediments in the Pampean Plain, Argentina. Revista Facultad de Ingeniería de la Universidad de Antioquia, Colombia 66:9–23 ISSN 0120-6230

    Google Scholar 

  • Martinez DE, Bocanegra ME, Cionchi JL (1995) Modelación hidrogeoquímica de procesos de mezcla. Su aplicación a casos de estudio en el acuífero de Mar del Plata II Seminario Hispano-Argentino Sobre Temas Actuales de la Hidrología Subterránea. Serie Correlación Geológica N 11:69–80

    Google Scholar 

  • Martinez DE, Massone HE, Ferrante A, Bernava G, Yedaide M (2004) Impacto del lixiviado de rellenos sanitarios en la Cuenca del Arroyo Lobería. Caracterización de la carga contaminante. Revista Latino-Americana de Hidrogeología 457:65

  • Martinez DE, Fourre E, Quiroz Londoño OM, Jean-Bapiste P, Glok Galli M, Dapoigni A, Grondona S (2015) Residence time distribution in a large unconfined-semiconfined aquifer in the Argentine’s Pampas using 3H/3He and CFCs tracers. Hydrogeology Journal, in press

  • Morse JW (1978) Dissolution kinetics of calcium carbonate in sea water: VI. The near-equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments. Am J Sci (United States), 278(3)

  • Morse JW (1983) The kinetics of calcium carbonate dissolution and precipitation. Rev Mineral Geochem 11(1):227–264

    Google Scholar 

  • Nicolli H, Suriano J, Gomez Peral M, Ferpozzi L (1989) Groundwater Contamination with Arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environ Geol Water Sci 14(1):3–16. doi:10.1007/BF01740581

    Article  Google Scholar 

  • Paoloni JD, Fiorentino CE, Sequeira ME (2003) Fluoride contamination of aquifers in the southeast subhumid pampa, Argentina. Environ Toxicol 18(5):317–320. doi:10.1002/tox.10131

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) A computer program for speciation, batch reaction, one dimensional transport and inverse geochemical calculation. U.S. Geological Survey Water-Resources Investigations Report 99-4259

  • Pokrovsky OS, Schott J (2002) Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ Sci Technol 36:426–432. doi:10.1021/es010925u

    Article  Google Scholar 

  • Pye K (1995) The nature, origin and accumulation of loess. Quat Sci Rev 14:653–667. doi:10.1016/0277-3791(95)00047-X

    Article  Google Scholar 

  • Schultz C, Castro E (2003) Estudio planificación y explotación del agua subterránea Una trilogía utópica en la República Argentina. III Congreso Argentino de Hidrogeología. Actas I. Rosario, Argentina, pp 219–225

    Google Scholar 

  • Smith ME, Knauss KG, Higgins SR (2013) Effects of crystal orientation on the dissolution of calcite by chemical and microscopic analysis. Chem Geol 360:10–21. doi:10.1016/j.chemgeo.2013.09.015

    Article  Google Scholar 

  • Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Res 27(3):322–332

    Google Scholar 

  • Tester JW, Worley WG, Robinson BA, Grigsby CO, Feerer JL (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625°C. Geochimica et Cosmochimica Acta 54(4):955–969. doi:10.1016/0016-7037(94)90020-5

    Google Scholar 

  • Tricart J (1973) Geomorfología de la Pampa Deprimida: base para los studios edafológicos y agronómicos; Plan Mapa de Suelos de la Región Pampeana. Secretaría de Estado de Agricultura y Ganadería de la Nación, Inst. Nacional de TecnologíaAgropecuaria INTA

  • Turner BD, Binning P, Stipp SLS (2005) Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ Sci Technol 39:9561–9568. doi:10.1021/es0505090

    Article  Google Scholar 

  • Van Cappellen P (1996) Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments. Chem Geol 132:125–130. doi:10.1016/S0009-2541(96)00047-2

    Article  Google Scholar 

  • Van Cappellen P, Qiu L (1997) Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep Sea Res Part II 44(5):1109–1128. doi:10.1016/S0967-0645(96)00113-0

    Article  Google Scholar 

  • White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals: an overview. Rev in Miner 31:583

    Google Scholar 

  • Xiao Y, Lasaga AC (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of Quartz dissolution OH catalysis. Geochim Cosmochim Acta 60:2283–2295. doi:10.1016/0016-7037(96)00101-9

    Article  Google Scholar 

  • Zárate, MA (1989) Estratigrafía y geología del Cenozoico tardío aflorante en los acantilados marinos comprendidos entre Playa San Carlos y el arroyo Chapadmalal, Partido de General Pueyrredón, Provincia de Buenos Aires (Doctoral dissertation, Facultad de Ciencias Naturales y Museo)

Download references

Acknowledgments

The National Agency for Science and Technology Promotion (ANPCyT, BID-PICT N°0768) supported this study financially. The authors are also thankful to Mr. G. Bernava for chemical analysis, Dr. Mariana Camino for PSD determination, and Dr. Margarita Osterrieth for binocular loupe and petrographic microscopy observations. The authors thank anonymous reviewers for their constructive comments and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vital.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘‘3RAGSU’’, guest edited by Daniel Emilio Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vital, M., Martínez, D.E., Borrelli, N. et al. Kinetics of dissolution processes in loess-like sediments and carbonate concretions in the southeast of the province of Buenos Aires, Argentina. Environ Earth Sci 75, 1231 (2016). https://doi.org/10.1007/s12665-016-6011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6011-9

Keywords

Navigation