Skip to main content

Advertisement

Log in

Whole cell hybridisation for monitoring harmful marine microalgae

  • Molecular tools for monitoring Harmful Algal Blooms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fluorescence in situ hybridisation (FISH) is a powerful molecular biological tool to detect and enumerate harmful microorganism in the marine environment. Different FISH methods are available, and especially in combination with automated counting techniques, the potential for a routine monitoring of harmful marine microalgae is attainable. Various oligonucleotide probes are developed for detecting harmful microalgae. However, FISH-based methods are not yet regularly included in monitoring programmes tracking the presence of harmful marine microalgae. A limitation factor of the FISH technique is the currently available number of suited fluorochromes attached to the FISH probes to detect various harmful species in one environmental sample at a time. However, coupled automated techniques, like flow cytometry or solid-phase cytometry, can facilitate the analysis of numerous field samples and help to overcome this drawback. A great benefit of FISH in contrast to other molecular biological detection methods for harmful marine microalgae is the direct visualisation of the hybridised target cells, which are not permitted in cell free formats, like DNA depending analysis methods. Therefore, an additional validation of the FISH-generated results is simultaneously given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CARD-FISH:

Catalysed reporter deposition–fluorescence in situ hybridisation

FISH:

Fluorescence in situ hybridisation

HAB:

Harmful algal bloom

LSU:

Large subunit

SSU:

Small subunit

References

  • Amann R, Fuchs BM (2008) Single cell identification in microbial communities by improved fluorescence in-situ hybridization techniques. Nat Revs Microbiol 6:339–347

    Article  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R, Scholin CA (2005) Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes. Deep-Sea Res II 52:2467–2490

    Article  Google Scholar 

  • Bauer C, Butin M, Decrulle M, Foulon V, Gaubert S, Guyomard S, Lejuez V, Mandray C, Philippe L, Sofia T (1996) Alternative methods of microbiological control. Review of the major rapid techniques. Report of a SFSTP commission. STP Pharma Practiq 6:449–464

    Google Scholar 

  • Behnam F, Vilcinskas A, Wagner M, Stoecker K (2012) A straightforward DOPE-FISH method for simultaneous multicolor detection of six microbial populations. Appl Environ Microbiol 78:5138–5142

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 39:D32–D37

    Article  CAS  Google Scholar 

  • Behrens S, Ruehland C, Inácio J, Huber H, Fonseca A, Spencer-Martins I, Fuchs BM, Amann R (2003) In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl Environ Microbiol 69:1748–1758

    Article  CAS  Google Scholar 

  • Casey J, Davidson N (1977) Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res 4:1539–1552

    Article  CAS  Google Scholar 

  • Chen GF, Wang GC, Zhang CY, Zhang BY, Wang XK, Zhou BC (2008) Development of rRNA and rDNA-targeted probes for fluorescence in-situ hybridization to detect Heterosigma akashiwo (Raphidophyceae). J Exp Mar Biol Ecol 355:66–75

    Article  CAS  Google Scholar 

  • Chen G, Zhang C, Zhang B, Wang G, Lu D, Xu Z, Yan P (2011) Development of a PNA probe for fluorescence in situ hybridization detection of Prorocentrum donghaiense. PLoS ONE 6(10):e25527. doi:10.1371/journal.pone.0025527

  • Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644

    Article  Google Scholar 

  • Connell I, Ray J, Litaker W, Tester P (2006) Enhanced detection levels in a semi automated sandwich hybridization assay using a peptide nucleic acid (PNA) probe. Afr J Mar Sci 28:237–239

    Article  Google Scholar 

  • Darynkiewicz Z, Smolewski P, Bedner E (2001) Use of flow and laser scanning cytometry to study mechanisms regulating cell cycle and controlling cell death. Clin Chem Lab Med 21:857–873

    Google Scholar 

  • Deere D, Vesey G, Milner M, Williams K, Ashbolt N, Veal D (1998) Rapid method for fluorescent in-situ ribosomal RNA labeling of Cryptosporidium parvum. J Appl Microbiol 85:807–818

    Article  CAS  Google Scholar 

  • Diercks-Horn S, Metfies K, Jaeckel S, Medlin LK (2011) The Algadec device: a semi-automated rRNA biosensor for the detection of toxic algae. Harmful Algae 10:395–401

    Article  CAS  Google Scholar 

  • Diercks S, Metfies K, Medlin LK (2008) Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae. Biosens Bioelectr 23:1527–1533

    Article  CAS  Google Scholar 

  • Dyhrman ST, Erdner D, La Du J, Galac M, Anderson DM (2006) Molecular quantification of toxic Alexandrium fundyense in the Gulf of Maine using real time PCR. Harmful Algae 5:242–250

    Article  CAS  Google Scholar 

  • Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982

    CAS  Google Scholar 

  • Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol 22:1–9

    Article  CAS  Google Scholar 

  • Groben R, John U, Eller G, Lange M, Medlin LK (2004) Using fluorescently labelled rRNA probes for hierarchical estimation of phytoplankton diversity. Nova Hedw 79:313–320

    Article  Google Scholar 

  • Guillou L, Chétiennot-Dinet MJ, Medlin LK, Claustre H, Loiseaux-de Goer S, Vaulot D (1999) Bolidomonas: a new genus with two species belonging to new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Huang B, Hou J, Lin S, Chen J, Hong H (2008) Development of a PNA probe for the detection of the toxic dinoflagellate Takayama pulchella. Harmful algae 7:495–503

    Article  CAS  Google Scholar 

  • Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732

    Article  CAS  Google Scholar 

  • Hoshino T, Yilmaz LS, Noguera DR, Daims H, Wagner M (2008) Quantification of target molecules needed to detect microorganisms by fluorescence in-situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl Environ Microbiol 74:5068–5077

    Article  CAS  Google Scholar 

  • Hosoi-Tanabe S, Sako Y (2006) Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater. Fish Sci 72:77–82

    Article  CAS  Google Scholar 

  • Hosoi-Tanabe S, Sako Y (2005) Rapid detection of natural cells of Alexandrium tamarense and A. catenella by fluorescence in-situ hybridization. Harmful Algae 4:319–328

    Article  Google Scholar 

  • Hou J, Lai H, Huang B, Chen J (2009) Identification of Prorocentrum minimum and Takayama pulchella by fluorescence microscopy and flow cytometry. Acta Oceanol Sin 28:103–114

    CAS  Google Scholar 

  • John U, Cembella A, Hummert C, Ellbrächter M, Groben R, Medlin LK (2003) Discrimination of the toxigenic dinoflagellates Alexandrium tamarense and A. ostenfeldii in co-occurring natural populations from Scottish coastal waters. Eur J Phycol 38:25–40

    Article  Google Scholar 

  • Kamentsky LA (2001) Laser scanning cytometry. Method Mol Cell Biol 63:51–87

    Article  CAS  Google Scholar 

  • Kim SK, Nielsen PE, Egholm M (1993) Right-handed triplex formed between peptide nucleic acids PNA-T8 and Poly (dA) shown by linear and circular dichroism spectroscopy. J Am Chem Soc 115:6477–6481

    Article  CAS  Google Scholar 

  • Lange M, Simon N, Guillou L, Vaulot D, Simon N, Amann RI, Ludwig W, Medlin LK (1996) Identification of the class Prymnesiophyceae and the genus Phaeocystis with rRNA-targeted nucleic acid probes. J Phycol 32:858–868

    Article  CAS  Google Scholar 

  • Lemarchand K, Parthuisot N, Catala P, Lebaron P (2001) Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquat Microb Ecol 25:301–309

    Article  Google Scholar 

  • Liao JC, Mastali M, Li Y, Gau V, Suchard MA, Babbitt J, Gornbein J, Landaw EM, McCabe ER, Churchill BM, Haake DA (2007) Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J Mol Diag 9:158–168

    Article  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  CAS  Google Scholar 

  • Manz W (1999) In-situ analysis of microbial biofilms by rRNA-targeted oligonucleotide probing. Method Enzymol 310:79–91

    Article  CAS  Google Scholar 

  • Marie D, Simon N, Vaulot D (2005) Phytoplankton cell counting by flow cytometry. In: Andersen RA (ed) Algal culturing techniques. Academic, San Diego, pp 1–15

    Google Scholar 

  • Medlin LK, Toebe K (2011) Molecular techniques to estimate biodiversity with case studies from the marine phytoplankton. In: Sofo A (ed) Biodiversity, ISBN: 978-953-307-715-4, InTech, doi:10.5772/25265. Available from: http://www.intechopen.com/books/biodiversity/molecular-techniques-to-estimate-biodiversity-with-case-studies-from-the-marine-phytoplankton

  • Mikulski CM, Park YT, Jones KL, Lee CK, Lim WA, Lee Y, Scholin CA, Doucette GJ (2008) Development and field application of rRNA-targeted probes for the detection of Cochlodinium polykrikoides. Harmful Algae 7:347–359

    Article  CAS  Google Scholar 

  • Mikulski CM, Morton SL, Doucette GJ (2005) Development and application of LSU rRNA probes for Karenia brevis in the Gulf of Mexico, USA. Harmful Algae 4:49–60

    Article  CAS  Google Scholar 

  • Miller PE, Scholin CA (2000) On detection of Pseudo-nitzschia (Bacillariophyceae) species using whole cell hybridization: sample fixation and stability. J Phycol 36:238–250

    Article  Google Scholar 

  • Miller PE, Scholin CA (1998) Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA–targeted fluorescent probes and filter-based whole cell hybridization. J Phycol 34:371–382

    Article  CAS  Google Scholar 

  • Miller PE, Scholin CA (1996) Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes. J Phycol 32:646–655

    Article  CAS  Google Scholar 

  • Montresor M, John U, Beran A, Medlin LK (2004) Alexandrium tamutum sp. nov. (Dinophyceae): a new, non-toxic species in the genus Alexandrium. J Phycol 40:398–411

    Article  CAS  Google Scholar 

  • Nielsen PE, Egholm M, Buchard O (1994) Peptide nucleic acid (PNA), a DNA mimic with a peptide backbone. Bioconjugate Chem 5:3–7

    Article  CAS  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH (1991) Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1491–1500

    Article  Google Scholar 

  • Orozco J, Toebe K, Medlin LK (2012) Assessment of three laboratory methods for a faster and reliable monitoring of harmful algal blooms. In: Galliard JF, Guarini JM, Gaill F (eds) Sensors for ecology. CNRS éditions, Paris, pp 140–160

    Google Scholar 

  • Parsons ML, Scholin CA, Miller PE, Doucette GJ, Powell CL, Fryxell GA, Dortch Q, Soniat TM (1999) Pseudo-nitzschia species (Bacillariophceae) in Louisiana coastal waters: molecular probe field trials, genetic variability, and domoic acid analyses. J Phycol 35:1368–1378

    Article  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in-situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  Google Scholar 

  • Rehnstam-Holm AS, Godhe A, Anderson DM (2002) Molecular studies of Dinophysis (Dinophyceae) species from Sweden and North America. Phycologia 41:348–357

    Article  Google Scholar 

  • Reynolds DT, Fricker CR (1999) Application of laser scanning for the rapid and automated detection of bacteria in water samples. J Appl Microbiol 86:785–795

    Article  CAS  Google Scholar 

  • Rhodes L, Scholin C, Garthwaite I, Haywood A, Thomas A (1998) Domoic acid producing Pseudo-nitzschia species reduced by whole cell DNA probe-based and immunochemical assays. In: Reguera B, Blanco I, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and IOC of UNESCO, Vigo, pp 274–277

    Google Scholar 

  • Roubin MR, Pharamond JS, Zanelli F, Poty F, Houdart S, Laurent F, Drocourt JL, Van Poucke S (2002) Application of laser scanning cytometry followed by epifluorescent and differential interference contrast microscopy for the detection and enumeration of Cryptosporidium and Giardia in raw and potable waters. J Appl Microbiol 93:599–607

    Article  Google Scholar 

  • Schönhuber W, Zarda B, Eix S, Rippka R, Herdmann M, Ludwig W, Amann R (1999) In-situ identification of cyanobacteria with horseradish peroxidase-labelled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    Google Scholar 

  • Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labelled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    Google Scholar 

  • Scholin CA, Buck KR, Britschig T, Cangelosi G, Chavez FP (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197

    Article  Google Scholar 

  • Scholin CA, Marin R, Miller PE, Doucette GJ, Powell CL, Haydock P, Howard J, Ray J (1999) DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol 35:1356–1367

    Article  CAS  Google Scholar 

  • Simon N, Campbell L, Örnólfsdóttir E, Groben R, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Euk Microbiol 47:76–84

    Article  CAS  Google Scholar 

  • Simon N, Brenner J, Edvardsen B, Medlin LK (1997) The identification of Chrysochromulina and Prymnesium species (Haptophyta, Prymnesiophyceae) using fluorescent or chemiluminescent oligonucleotide probes: a means of improving studies on toxic algae. Eur J Phycol 32:393–401

    Article  Google Scholar 

  • Tang X, Yu R, Zhou M, Yu Z (2012) Application of rRNA probes and fluorescence in-situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum. Chin J Oceanol Limnol 30:256–263

    Article  CAS  Google Scholar 

  • Toebe K, Alpermann TJ, Tillmann U, Krock B, Cembella A, John U (2013a) Molecular discrimination of toxic and non-toxic Alexandrium species (Dinophyta) in natural phytoplankton assemblages from the Scottish coast of the North Sea. Eur J Phycol 48:12–26

    Google Scholar 

  • Toebe K, Joshi AR, Messtorff P, Tillmann U, Cembella A, John U (2013b) Molecular discrimination of taxa within the dinoflagellate genus Azadinium, the source of azaspiracid toxins. J Plankton Res 35:225–230

    Google Scholar 

  • Toebe K, Eller G, Medlin LK (2006) Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae). J Plankton Res 7:643–657

    Article  Google Scholar 

  • Touzet N, Lacaze JP, Maher M, Turrell E, Raine R (2011) Summer dynamics of Alexandrium ostenfeldii (Dinophyceae) and spirolide toxins in Cork Harbour, Ireland. Mar Ecol Prog Ser 425:21–33

    Article  CAS  Google Scholar 

  • Touzet N, Franco JM, Raine R (2008) PSP toxin analysis and discrimination of the naturally co-occurring Alexandrium tamarense and A. minutum (Dinophyceae) in Cork Harbour, Ireland. Aquat Microb Ecol 51:285–299

    Article  Google Scholar 

  • Touzet N, Raine R (2007) Discrimination of Alexandrium andersoni and A. minutum (Dinophyceae) using LSU rRNA-targeted oligonucleotide probes and fluorescent whole-cell hybridization. Phycologica 46:168–177

    Article  Google Scholar 

  • Veal DA, Deere D, Ferrrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Meths 243:191–210

    Article  CAS  Google Scholar 

  • Vives-Rego J, Lebaron P, von Nebe C (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Revs 24:429–448

    Article  CAS  Google Scholar 

  • Worden AZ, Chisholm SW, Binder BJ (2000) In situ hybridization of Prochlorococcus and Synechococcus (marine cyanobacteria) spp. with rRNA targeted peptide nucleic acid probes. Appl Environ Microbiol 66:284–289

    Article  CAS  Google Scholar 

  • Zhang B, Chen G, Wang G, Lu D (2010) Identification of two Skeletonema costatum-like diatoms by fluorescence in-situ hybridization. Chin J Oceanol Limnol 28:310–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Toebe.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toebe, K. Whole cell hybridisation for monitoring harmful marine microalgae. Environ Sci Pollut Res 20, 6816–6823 (2013). https://doi.org/10.1007/s11356-012-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1416-9

Keywords

Navigation