Skip to main content

Advertisement

Log in

Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy

  • Molecular tools for monitoring Harmful Algal Blooms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Monitoring of marine microalgae is important to predict and manage harmful algal blooms. Microarray Detection of Toxic ALgae (MIDTAL) is an FP7-funded EU project aiming to establish a multi-species microarray as a tool to aid monitoring agencies. We tested the suitability of different prototype versions of the MIDTAL microarray for the monthly monitoring of a sampling station in outer Oslofjorden during a 1-year period. Microarray data from two different versions of the MIDTAL chip were compared to results from cell counts (several species) and quantitative real-time PCR (qPCR; only Pseudochattonella spp.). While results from generation 2.5 microarrays exhibited a high number of false positive signals, generation 3.3 microarray data generally correlated with microscopy and qPCR data, with three important limitations: (1) Pseudo-nitzschia cells were not reliably detected, possibly because cells were not sufficiently retained during filtration or lysed during the extraction, and because of low sensitivity of the probes; (2) in the case of samples with high concentrations of non-target species, the sensitivity of the arrays was decreased; (3) one occurrence of Alexandrium pseudogonyaulax was not detected due to a 1-bp mismatch with the genus probe represented on the microarray. In spite of these shortcomings our data demonstrate the overall progress made and the potential of the MIDTAL array. The case of Pseudochattonella — where two morphologically similar species impossible to separate by light microscopy were distinguished — in particular, underlines the added value of molecular methods such as microarrays in routine phytoplankton monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DM, White AW, Baden DG (1985) Toxic dinoflagellates. Elsevier, New York

    Google Scholar 

  • Aure J, Danielssen DS, Skogen M, Svendsen E, Dahl E, Søiland H, Petterson L (2001) Environmental conditions during the Chattonella bloom in the North Sea and Skagerrak in May 1998. In: Hallegraeff GM, Bolch CJS, Blackburn I, Lewis R (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 82–85

    Google Scholar 

  • Backe-Hansen P, Dahl E, Danielssen DS (2001) On the bloom of Chattonella in the North-Sea/Skagerrak in April–May 1998. In: Hallegraeff GM, Bolch CJS, Blackburn I, Lewis R (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 78–81

    Google Scholar 

  • Barra L, Ruggiero MV, Sarno D, Montresor M, Kooistra W (2012) Strengths and weaknesses of microarray approaches to detect Pseudo-nitzschia species in the field. Environ Sci Pollut R. doi:10.1007/s11356-012-1330-1 (this issue)

  • Bowers HA, Tengs T, Glasgow HB, Burkholder JM, Rublee PA, Oldach DW (2000) Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Appl Env Microbiol 66:4641–4648. doi:10.1128/AEM.66.11.4641-4648.2000

    Article  CAS  Google Scholar 

  • Costas BA, McManus G, Doherty M, Katz LA (2007) Use of species-specific primers and PCR to measure the distributions of planktonic ciliates in coastal waters. Limnol Oceanogr Meth 5:163–173. doi:10.4319/lom.2007.5.163

    Article  CAS  Google Scholar 

  • Dahl E, Tangen K (1993) 25 years experience with Gyrodinium aureolum in Norwegian waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 15–21

    Google Scholar 

  • Dahl E, Tangen K (1999) The life with harmful algae in Norway—management. Algaeinfo website http://algeinfo.imr.no/eng/html/11/. Accessed 2 July 2012

  • Dahl E, Bagøien E, Edvardsen B, Stenseth NC (2005) The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J Sea Res 54:15–24. doi:10.1016/j.seares.2005.02.004

    Article  Google Scholar 

  • Dittami SM, Edvardsen B (2012) Culture conditions influence cellular RNA content in ichthyotoxic flagellates of the genus Pseudochattonella (Dictyochophyceae). J Phycol 48:1050–1055. doi:10.1111/j.1529-8817.2012.01183.x

    Article  CAS  Google Scholar 

  • Dittami SM, Edvardsen B (2012) GPR-Analyzer: a simple tool for quantitative analysis of hierarchical multispecies microarrays. Environ Sci Pollut R. doi:10.1007/s11356-012-1051-5 (this issue)

  • Dittami SM, Riisberg I, Edvardsen B (2013) Molecular probes for the detection and identification of ichthyotoxic marine microalgae of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta). Environ Sci Pollut R. doi:10.1007/s11356-012-1402-2 (this issue)

  • Edler L (2006) Algal situation in marine waters surrounding Sweden. AlgAware Oceanographic Unit 1

  • Edvardsen B, Paasche E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In: Anderson DM, Cembella AD, Hallegraef GM (eds) Physiological ecology of harmful algal blooms. Springer, Heidelberg, pp 193–208

    Google Scholar 

  • Edvardsen B, Shalchian-Tabrizi K, Jakobsen KS, Medlin LK, Dahl E, Brubak S, Paasche E (2003) Genetic variability and molecular phylogeny of Dinophysis species (Dinophyceae) from Norwegian waters inferred from single cell analyses of rDNA. J Phycol 39:395–408. doi:10.1046/j.1529-8817.2003.01252.x

    Article  CAS  Google Scholar 

  • Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak, Norway. J Phycol 43:1054–1070. doi:10.1111/j.1529-8817.2007.00390.x

    Article  CAS  Google Scholar 

  • Edvardsen B, Dittami SM, Groben R, Brubak, S, Escalera L, Rodríguez Hernández F, Reguera B, Chen J, Medlin LK (2012) Molecular probes and microarray for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta). Environ Sci Pollut R. doi:10.1007/s11356-012-1403-1

  • Fritz L, Triemer RE (1985) A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates. J Phycol 21:662–664. doi:10.1111/j.0022-3646.1985.00662.x

    Article  Google Scholar 

  • Galluzzi L, Cegna A, Casabianca S, Penna A, Saunders N, Magnani M (2011) Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates. J Microbiol Meth 84:234–242. doi:10.1016/j.mimet.2010.11.024

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire KH, Medlin LK (2008a) Feasibility of assessing the community composition of prasinophytes at the Helgoland Roads sampling site with a DNA microarray. Appl Env Microbiol 74:5305–5316. doi:10.1128/AEM.01271-08

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Medlin LK (2008b) The ALEX CHIP—development of a DNA chip for identification and monitoring of Alexandrium. Harmful Algae 7:485–494. doi:10.1016/j.hal.2007.11.001

    Article  CAS  Google Scholar 

  • Granéli E, Sundstorm B, Edler L, Anderson DM (1990) Toxic marine phytoplankton. Elsevier, New York

    Google Scholar 

  • Granéli E, Edvardsen B, Roelke DL, Hagström JA (2012) The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14:260–270. doi:10.1016/j.hal.2011.10.024

    Article  Google Scholar 

  • Hasle GR (1978) Settling, the inverted-microscope method. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 88–96

    Google Scholar 

  • Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397:1723–1732. doi:10.1007/s00216-010-3642-7

    Article  CAS  Google Scholar 

  • Jakobsen R, Hansen PJ, Daugbjerg N, Andersen NG (2012) The fish-killing dictyochophyte Pseudochattonella farcimen: adaptations leading to bloom formation during early spring in Scandinavian waters. Harmful Algae 18:84–95. doi:10.1016/j.hal.2012.04.008

    Article  Google Scholar 

  • John U, Medlin LK, Groben R (2005) Development of specific rRNA probes to distinguish between geographic clades of the Alexandrium tamarense species complex. J Plankton Res 27:199–204. doi:10.1093/plankt/fbh160

    Article  CAS  Google Scholar 

  • Johnsen G, Sakshaug E (2000) Monitoring of harmful algal blooms along the Norwegian coast using bio-optical methods. S Afr J Mar Sci 22:309–321. doi:10.2989/025776100784125726

    Article  Google Scholar 

  • Johnsen TM, Eikrem W, Olseng CD, Tollefsen KE, Bjerknes V (2010) Prymnesium parvum: the Norwegian experience. J Am Water Resour As 46:6–13. doi:10.1111/j.1752-1688.2009.00386.x

    Article  Google Scholar 

  • Kegel JU, Amo YD, Medlin LK (2012) Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France. Environ Sci Pollut R. doi:10.1007/s11356-012-1299-9

  • Ki JS, Han MS (2006) A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21:1812–1821. doi:10.1016/j.bios.2005.09.006

    Article  CAS  Google Scholar 

  • Lekve K, Bagøien E, Dahl E, Edvardsen B, Skogen M, Stenseth NC (2006) Environmental forcing as a main determinant of bloom dynamics of the Chrysochromulina algae. Proc R Soc B 273:3047–3055. doi:10.1098/rspb.2006.3656

    Article  CAS  Google Scholar 

  • Lewis J, Medlin LK, Raine R (2012) MIDTAL (Microarrays for the Detection of Toxic Algae): a protocol for a successful microarray hybridisation and analysis. Koeltz, Koenigstein, Germany

    Google Scholar 

  • McNamee S, Campbell K, Elliot C (2013). Surface plasmon resonance technology as an early warning monitoring tool for marine biotoxins in algae and seawater samples. Environ Sci Pollut R (this issue)

  • Orr RJS, Stüken A, Rundberget T, Eikrem W, Jakobsen KS (2011) Improved phylogenetic resolution of toxic and non-toxic Alexandrium strains using a concatenated rDNA approach. Harmful Algae 10:676–688. doi:10.1016/j.hal.2011.05.003

    Article  Google Scholar 

  • Sechet V, Safran P, Hovgaard P, Yasumoto T (1990) Causative species of diarrhetic shellfish poisoning (DSP) in Norway. Mar Biol 105:269–274. doi:10.1007/BF01344296

    Article  Google Scholar 

  • Simon N, Campbell L, Ornolfsdottir E, Groben R, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Euk Microbiol 47:76–84. doi:10.1111/j.1550-7408.2000.tb00014.x

    Article  CAS  Google Scholar 

  • Skjelbred B, Edvardsen B, Andersen T (2012) Environmental optima for seven strains of Pseudochattonella (Dictyochophyceae, Heterokonta). J Phycol. doi:10.1111/jpy.12008

  • Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bull Fish Res Bd Can 167:1–310

    Google Scholar 

  • Throndsen J (1978) Preservation and storage. In: Sournia (ed) Phytoplankton manual. UNESCO, Paris, pp 59–69

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Walday M, Gitmark J, Naustvoll L, Norling K, Selvik JR, Sørensen K (2010) Overvåking av Ytre Oslofjord 2009, Rapport L. Nr. 5971–2010. NIVA, Oslo

  • Walday M, Gitmark J, Naustvoll L, Norling K, Selvik JR, Kai S (2011) Overvåking av Ytre Oslofjord 2010, Rapport L. Nr. 6184–2011 (p. 77). NIVA, Oslo

Download references

Acknowledgments

We would like to thank Rita Amundsen, Tor Fredrik Holth, as well as the crew of the research vessel Trygve Braarud for their support during the monthly samplings, Shuhei Ota for EM analyses of the June 2010 samples, as well as the partners of MIDTAL for helpful discussions and support throughout the project. This work was funded by the EU’s seventh Framework Program (FP7-ENV-2007-1-MIDTAL-201724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon M. Dittami or Bente Edvardsen.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of probes represented on the MDITAL microarray generation 2.5. Probe sequences are not provided because the microarray is patent pending. Probes on generation 3.3 arrays have the same specificity and sequence, but have the suffix “_dT” was added to the probe name (DOC 123 kb)

Table S2

Estimations of detection limits for selected probes as determined by different partners of the MIDTAL project and published by Kegel et al. (2012) with modifications according to Edvardsen et al. (2012) for Dinophysis spp. (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittami, S.M., Hostyeva, V., Egge, E.S. et al. Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy. Environ Sci Pollut Res 20, 6719–6732 (2013). https://doi.org/10.1007/s11356-012-1392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1392-0

Keywords

Navigation