Skip to main content
Log in

Strengths and weaknesses of microarray approaches to detect Pseudo-nitzschia species in the field

  • Molecular tools for monitoring Harmful Algal Blooms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The planktonic diatom genus Pseudo-nitzschia contains several genetically closely related species. Some of these can produce domoic acid, a potent neurotoxin. Thus, monitoring programs are needed to screen for the presence of these toxic species. Unfortunately, many are impossible to distinguish using light microscopy. Therefore, we assessed the applicability of microarray technology for detection of toxic and non-toxic Pseudo-nitzschia species in the Gulf of Naples (Mediterranean Sea). Here, 11 species have been detected, of which at least 5 are potentially toxic. A total of 49 genus- and species-specific DNA probes were designed in silico against the nuclear LSU and SSU rRNA of 19 species, and spotted on the microarray. The microarray was tested against total RNA of monoclonal cultures of eight species. Only three of the probes designed to be species-specific were indeed so within the limits of our experimental design. To assess the effectiveness of the microarray in detecting Pseudo-nitzschia species in environmental samples, we hybridized total RNA extracted from 11 seasonal plankton samples against microarray slides and compared the observed pattern with plankton counts in light microscopy and with expected hybridization patterns obtained with monoclonal cultures of the observed species. Presence of species in field samples generally resulted in signal patterns on the microarray as observed with RNA extracted from cultures of these species, but many a-specific signals appeared as well. Possible reasons for the numerous cross reactions are discussed. Calibration curves for Pseudo-nitzschia multistriata showed linear relationship between signal strength and cell number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749

    Article  CAS  Google Scholar 

  • Amato A, Kooistra WHCF, Levialdi GJH, Mann DG, Pröschold T, Montresor M (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158:193–207

    Article  CAS  Google Scholar 

  • Amato A, Lüdeking A, Kooistra WHCF (2009) Intracellular domoic acid production in Pseudo-nitzschia multistriata isolated from the Gulf of Naples (Tyrrhenian Sea, Italy). Toxicon 55:157–161

    Article  Google Scholar 

  • Amato A, Montresor M (2008) Morphology, phylogeny, and sexual cycle of Pseudo-nitzschia mannii sp. nov. (Bacillariophyceae): a pseudo-cryptic species within the P. pseudodelicatissima complex. Phycologia 47:487–497

    Article  Google Scholar 

  • Andree KB, Fernández-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, Garcés E, Camp J, Diogène J (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the Northwestern Mediterranean Sea. Appl Environ Microbiol 77:1651–1659

    Article  CAS  Google Scholar 

  • Ayers K, Rhodes LL, Gladstone M, Tyrrell J, Scholin C (2005) International accreditation of sandwich hybridisation assay format DNA probes for micro-algae. N Z J Mar Freshw Res 39:1225–1231

    Article  CAS  Google Scholar 

  • Barlaan EA, Furukawa S, Takeuchi K (2007) Detection of bacteria associated with harmful algal blooms from coastal and microcosm environments using electronic microarrays. Environ Microbiol 9:690–702

    Article  CAS  Google Scholar 

  • Bates SS, Bird CJ, de Freitas ASW, Foxall R, Gilgan M, Hanic LA, Johnson GR, McCulloch AW, Odense P, Pocklington R, Quilliam MA, Sim PG, Smith JC, Subba Rao DV, Todd ECD, Walter JA, Wright JLC (1989) Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquat Sci 46:1203–1215

    Article  CAS  Google Scholar 

  • Berdalet JE, Latas M, Estrada JVL (1994) Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa spp. Plankton Res 16:303–316

    Article  CAS  Google Scholar 

  • Boenigk J, Jost S, Stoeck T, Garstecki T (2006) Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol 9:593–602

    Article  Google Scholar 

  • Cho ES, Park JG, Oh BC, Cho YC (2001) The application of species specific DNA-targeted probes and fluorescently tagged lectin to differentiate several species of Pseudo-nitzschia (Bacillariophyceae) in Chinhae Bay, Korea. Sci Mar 65:207–214

    CAS  Google Scholar 

  • D’Alelio D, Amato A, Luedeking A, Montresor M (2009) Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata. Harmful Algae 8:225–232

    Article  Google Scholar 

  • De Madariaga J, Joint I (1992) A comparative study of phytoplankton physiological indicators. Exp Mar Biol Ecol 158:149–165

    Article  Google Scholar 

  • Diercks S, Metfies K, Medlin LK (2008) Molecular probe sets for the detection of toxic algae for use in sandwich hybridization formats. J Plankton Res 30:439–448

    Article  CAS  Google Scholar 

  • Dittami SM, Edvardsen B (2012a) GPR-Analyzer: a simple tool for quantitative analysis of hierarchical multispecies microarrays. Env Sci Poll Res. doi:10.1007/s11356-012-1051-5

  • Dittami SM, Edvardsen B (2012b) Culture conditions influence cellular RNA content in ichthyotoxic flagellates of the genus Pseudochattonhella (Dictyophyceae). J Phycol 48:1050–1055

    Article  CAS  Google Scholar 

  • Dortch Q, Roberts TL, Clayton JR, Ahmed SI (1983) RNA/DNA ratios and DNA concentrations as indicators of growth rate and biomass in planktonic marine organisms. Mar Ecol Prog Ser 13:61–71

    Article  CAS  Google Scholar 

  • Douglas DJ, Landry D, Douglas SJ (1994) Genetic relatedness of toxic and non-toxic isolates of the pennate diatom Pseudo-nitzschia (Bacillariophyceae): phylogenetic analysis of 18s rRNA sequences. Nat Toxins 2:166–174

    Article  CAS  Google Scholar 

  • Ebenezer V, Medlin LK, Ki JS (2012) Molecular detection, quantification, and diversity evaluation of microalgae. Mar Biotechnol 14:129–142

    Article  CAS  Google Scholar 

  • Galluzzi L, Cegna A, Casabianca S, Penna A, Saunders N, Magnani M (2011) Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates. J Microbiol Meth 84:234–242

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire KH, Medlin LK (2008) Feasibility of assessing the community composition of Prasinophytes at the Helgoland Roads sampling site with a DNA microarray. App and Environ Microbiol 74:5305–5316

    Article  CAS  Google Scholar 

  • Gresham D, Curry B, Ward A, Gordon DB, Brizuela L, Kruglyak L, Botsein D (2010) Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes. Proc Nat Acad Sci 107:1482–1487

    Article  CAS  Google Scholar 

  • Groben R, Uwe J, Gundula E, Lange M, Medlin LK (2004) Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity—a mini-review. Nova Hedwigia 79:313–320

    Article  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Hong SH, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3:1365–1373

    Article  CAS  Google Scholar 

  • John U (2004) Development of specific rRNA probes to distinguish between geographic clades of the Alexandrium tamarense species complex. J Plankton Res 27:199–204

    Article  Google Scholar 

  • Kegel JU, Medlin LK, Del Amo Y (2012). Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France. Environ Sci Pol Res doi:10.1007/s11356-012-1299-9

  • Ki J-S, Han M-S (2006) A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21:1812–1821

    Article  CAS  Google Scholar 

  • Kudela RM, Howard MDA, Jenkins BD, Miller PE, Smith GJ (2010) Using the molecular toolbox to compare harmful algal blooms in upwelling systems. Prog Oceanogr 85:108–121

    Article  Google Scholar 

  • Lange M, Guillou L, Vaulot D, Simon N, Amann RI, Ludwig W, Medlin LK (1996) Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probe detected by flow cytometry. J Phycol 32:858–868

    Article  CAS  Google Scholar 

  • Lewis J, Medlin LK, Raine R (eds) (2012) MIDTAL (microarrays for the detection of toxic algae): a protocol for a successful microarray hybridisation and analysis. Gantner AR, CH. ISBN 978-3-905997-08-8

    Google Scholar 

  • Lundholm N, Moestrup Ø, Kotaki Y, Hoef-Emden K, Scholin C, Miller P (2006) Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic analyses. J Phycol 42:464–481

    Article  CAS  Google Scholar 

  • Lundholm N, Bates SS, Baugh KA, Bill BD, Connell LB, Léger C, Trainer VL (2012) Cryptic and pseudo-cryptic diversity in diatoms—with descriptions of Pseudo-nitzschia hasleana sp. nov. and P. fryxelliana sp. nov. J Phycol 48:436–445

    Article  Google Scholar 

  • McCoy GR, Touzet N, Fleming GTA, Raine R (2012) An evaluation of the applicability of microarrays for monitoring toxic algae in Irish coastal waters. Environ Sci Pol Res. doi:10.1007/s11356-012-1294-1

  • McDonald SM, Sarno D, Zingone A (2007) Identifying Pseudo-nitzschia species in natural samples using genus-specific PCR primers and clone libraries. Harmful Algae 6:849–860

    Article  CAS  Google Scholar 

  • Medlin LK, Kooistra WHCF (2010) Methods to estimate the diversity in the marine photosynthetic protist community with illustrations from case studies: a review. Diversity 2010:973–1014

    Article  Google Scholar 

  • Metfies K, Medlin LK (2008) Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA Gene phylochip and mapping of signal intensities. Appl Environ Microbiol 74:2814–2821

    Article  CAS  Google Scholar 

  • Metfies K, Borsutzki P, Gescher C, Medlin LK, Frickenhaus S (2008) PhylochipAnalyser—a program for analysing hierarchical probe sets. Mol Ecol Res 8:99–102

    Article  CAS  Google Scholar 

  • Metfies K, Medlin LK (2005) Ribosomal RNA probes and microarrays: their potential use in assessing microbial biodiversity. In: Zimmer EA, Roalson E (eds) Methods in Enzymology 395:258–278. Elsevier, NL. ISSN: 0076–6879

  • Miller PE, Scholin CA (1998) Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. J Phycol 34:371–382

    Article  CAS  Google Scholar 

  • Miller PE, Scholin CA (2000) On detection of Pseudo-nitzschia (Bacillariophyceae) species using whole-cell hybridization: sample fixation and stability. J Phycol 36:238–250

    Article  Google Scholar 

  • Not F, del Campo J, Balagué V, de Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS One. doi:10.1371/journal.pone.0007143

  • Orsini L, Procaccini G, Sarno D, Montresor M (2004) Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. Mar Ecol Prog Ser 271:87–98

    Article  CAS  Google Scholar 

  • Orsini L, Sarno D, Procaccini G, Polletti R, Dahlmann J, Montresor M (2002) Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur J Phycol 37:247–257

    Article  Google Scholar 

  • Pan YL, Durvasula VSR, Mann KH (1996a) Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia multiseries under phosphate limitation. J Phycol 32:371–381

    Article  CAS  Google Scholar 

  • Pan YL, Subba Rao DV, Mann KH, Brown RG, Pocklington R (1996b) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries I. Batch culture studies. Mar Ecol Prog Ser 131:225–233

    Article  CAS  Google Scholar 

  • Pan YL, Subba Rao DV, Mann KH, Li WKW, Harrison WG (1996c) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries. II. Continuous culture studies. Mar Ecol Prog Ser 131:235–243

    Article  CAS  Google Scholar 

  • Parsons ML, Scholin CA, Miller PE, Doucette GJ, Powell CL, Fryxell GA, Dortch Q, Soniat TM (1999) Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probe field trials, genetic variability and domoic acid analyses. J Phycol 35:1368–1378

    Article  Google Scholar 

  • Penna A, Fraga S, Masò M, Giacobbe MG, Bravo I, Garcés E, Vila M, Bertozzini E, Andreoni F, Luglio A, Vernesi C (2008) Phylogenetic relationships among the Mediterranean Alexandrium (Dinophyceae) species based on sequences of 5.8S gene and Internal Transcript Spacers of the rRNA operon. Eur J Phycol 43:163–178

    Article  CAS  Google Scholar 

  • Scholin CA, Buck KR, Britschi T, Cangelosi G, Chavez FP (1996) Identification of Pseudo-nitzschia australis using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35:190–197

    Article  Google Scholar 

  • Scholin C, Marin R, Miller P, Doucette G, Powell C, Howard J, Haydock P, Ray J (1999) Application of DNA probes and a receptor binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol 35:1356–1367

    Article  CAS  Google Scholar 

  • Simon N, Brenner J, Edvardsen B, Medlin LK (1997) The identification of Chrysochromulina and Prymnesium species Haptophyta, Prymnesiophyceae, using fluorescent or chemiluminescent oligonucleotide probes, a means for improving studies on toxic algae. Eur J Phycol 32:393–401

    Article  Google Scholar 

  • Simon N, Campbell L, Ornolfsdottir E, Groben R, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Euk Microbiol 47:76–84

    Article  CAS  Google Scholar 

  • Smith MW, Maier MA, Suciu D, Peterson TD, Bradstreet T, Nakayama J, Simon HM (2012) High resolution microarray assay for rapid taxonomic assessment of Pseudo-nitzschia spp. (Bacillariophyceae) in the field. Harmful Algae 19:169–180

    Article  Google Scholar 

  • Tesson SVM, Borra M, Kooistra WHCF, Procaccini G (2011) Microsatellite primers in the planktonic diatom Pseudo-nitzschia multistriata (Bacillariophyceae). Am J Bot. doi:10.3732/ajb.1000430

  • Thessen AE, Bowers HA, Stoecker DK (2009) Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful Algae 8:792–810

    Article  CAS  Google Scholar 

  • Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, Trick CG (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300

    Article  Google Scholar 

  • von Utermöhl H (1931) Neue wege in der quantitativen erfassung des planktons. (mit besondere berücksichtigung des ultraplanktons). Verh Int Verein Theor Angew Limnol 5:567–595, in German

    Google Scholar 

Download references

Acknowledgments

The authors thank Francisco Rodriguez Hernandez, Jixin Chen and Sylvie Tesson who provided some of Pseudo-nitzschia strains used in this study and the EU-FP7 project MIDTAL for funding. We also thank Pasquale de Luca for technical advice and Linda K. Medlin (coordinator of the MIDTAL project) and Adriana Zingone for scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valeria Ruggiero.

Additional information

Responsible editor: Robert Duran

Authors Barra Lucia and Ruggiero Maria Valeria contributed equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra, L., Ruggiero, M.V., Sarno, D. et al. Strengths and weaknesses of microarray approaches to detect Pseudo-nitzschia species in the field. Environ Sci Pollut Res 20, 6705–6718 (2013). https://doi.org/10.1007/s11356-012-1330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1330-1

Keywords

Navigation