Skip to main content
Log in

Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k 1, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajay KJ, Gupta VK, Shubhi J, Suhas (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38:1195–1200

    Article  Google Scholar 

  • Alemdar A, Gungor N, Ece OI, Atici O (2005) The rheological properties and characterization of bentonite suspension in the presence of non-ionic polymer PEG. Mater Sci Lett 40:171–177

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1(6):2661–2667

    Article  CAS  Google Scholar 

  • Cervera MF, Heinamaki J, Rasanen M, Antikainen O, Nieto OM, Iraizoz A (2004) Determination of tackiness of chitosan film-coated pellets exploiting minimum fluidization velocity. Int J Pharm 281:119–127

    Article  Google Scholar 

  • Ebru GD, Pestreli CH, Unlu O, Atici GN (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohydr Polym 67:358–365. doi:10.1016/J.Carbpol.2006.06.004

    Article  Google Scholar 

  • Finqueneised G, Zimmy T, Vogt D, Weber JW (1998) Feasibility of the preparation of effective cheap adsorbents from lignites in rotary kiln. Fuel Process Technol 57:196

    Google Scholar 

  • Gang S, Weixing S (1998) Sunflower stalk as adsorbents for the removal of metal ions from waste water. Ind Eng Chem Res 37(4):1324–1328

    Article  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007a) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71(3):1110–1117

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007b) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72(3):976–983

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42(3):766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Equilibrium and kinetic modelling of cadmium (II) biosorption by non-living algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloid Surf B Biointerfaces 64:170–178

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008c) Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc museorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash a low cost adsorbent. Ind Eng Res 42:6619–6624

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997) Process development for the removal of zinc and cadmium from wastewater using slag—a blast furnace waste material. Sep Sci Technol 32(17):2883–2912

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1998) Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Sep Sci Technol 33(9):1331–1343

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999a) Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19:129–139

    Article  Google Scholar 

  • Gupta VK, Ajay KJ, Singh LP, Khurana U, Kumar P (1999b) Molybdate sensor based on 5,10,15,20-tetraphenylporphyrinatocobalt complex in a PVC matrix. Anal Chim Acta 379(1–2):201–208

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Khurana U, Singh LP (1999c) PVC-based neutral carrier and organic exchanger membranes as sensors for the determination of Ba2+ and Sr2+. Sens Actuators B Chem 55(2):201–211

    Article  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34(5):1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35(5):1125–1134

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Agarwal S (2002) Pb (II) selective potentiometric sensor based on 4-tert-lcalix[4]arene in PVC matrix. Electroanalysis 14(15–16):1127–1132

    Article  CAS  Google Scholar 

  • Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg (II), Pb (II) and Xd (II) from aqueous solution on Duolite C-433: a synthetic resin. J Colloid Interface Sci 275:398–402

    Article  CAS  Google Scholar 

  • Gupta VK, Chandra S, Lang H (2005) A highly selective mercury electrode based on a diamine donor ligand. Talanta 66(3):575–580

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006a) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304(1):52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Krishnan L, Mittal J (2006b) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci 293(1):16–26

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Jain R, Mattur M, Sikarwar S (2006c) Adsorption of safranin-T from wastewater using waste materials-activated carbon and activated rice husks. J Colloid Interface Sci 303:80–86

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006d) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste material: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006e) Chromium (III)-selective sensor based on tri-o-thymotide in PVC matrix. Sens Actuators B Chem 113(1):182–186

    Article  Google Scholar 

  • Gupta VK, Jain AK, Kumar P (2006f) PVC-based membranes of N, N?-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb (II)-selective sensor. Sens Actuators B Chem 120(1):259–265

    Article  Google Scholar 

  • Gupta VK, Jain AK, Maheshwari G, Heinrich L, Ishtaiwi Z (2006g) Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens Actuators B Chem 117(1):99–106

    Article  Google Scholar 

  • Gupta VK, Ali I, Vipin KS (2007a) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA 13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007b) Removal of reactorfix golden yellow 3 RFN from aqueous using wheat husk—an agricultural waste. J Hazard Mater 142:448

    Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sivkarwar S (2007c) Photochemical degradation of the hazardous dye safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007d) Schiff bases as cadmium (II) selective ionophores in polymericmembrane electrodes. Anal Chim Acta 583(2–5):340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007e) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312(2):292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Al Khayat M, Gupta B (2007f) Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal Chim Acta 590(1):81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009a) Low cost adsorbents: growing approach to wastewater treatment: a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Al Khayat M, Singh AK, Pal MK (2009b) Nano level detection of Cd (II) using poly (vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634(1–16):36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009c) Novel alizarin sensor for determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009d) Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta 647(1):66–71

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Ho YS (2003) Removal of copper ions from aqueous solution by tree fern. Water Res 37:2323–2330

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Kinetic studies of dye sorption by biosorbent waste product pith. Resour Conserv Recycl 25(3–4):171–193

    Google Scholar 

  • Hodi M, Polyak K, Htavay J (1995) Removal of pollutants from drinking water by combined ion exchange and adsorption methods. Environ Int 21:325–328

    Article  CAS  Google Scholar 

  • Igwe JC, Abia AA (2003) Maize cob and husk as adsorbents for removal of Cd, Pb and Zn ions from wastewater. Phys Sci 2:83–94

    Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995a) Copper (II)-selective electrodes based on macrocyclic compounds. Anal Proc Incl Anal Commun 32:99–101

    Article  Google Scholar 

  • Jain AK, Gupta VK, Singh LP (1995b) Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal Proc Incl Anal Commun 32:263–265

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997a) A new cerium (IV) vanadate-based solid membrane electrode for bismuth (III). Electroanalysis 9:360–1364

    Google Scholar 

  • Jain AK, Gupta VK, Khurana U, Singh LP (1997b) A new membrane sensor for UO2+2 ions based on 2-hydroxyacetophenoneoximethiourea-trioxane resin. Electroanalysis 9(11):857–860

    Article  CAS  Google Scholar 

  • Liu J, Zhang X-H, Tran H, Wang D-Q, Zhu Y-N (2011) Heavy metal contamination and risk assessment in water, paddy soil and rice around electroplating plant. Environ Sci Pollut Res 18:1623–1632

    Google Scholar 

  • Mittal A, Gupta VK, Kurup Krishnan L (2005) Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. J Hazard Mater 117(2–3):171–178

    Article  CAS  Google Scholar 

  • Namasivayam C, Senthilkumar S (1998) Removal of Arsenic (V) from aqueous solution using industrial solid waste: adsorption rates and equilibrium studies. Ind Eng Chem Res 37:4816–4822

    Article  CAS  Google Scholar 

  • Nelson A, Cosgrove T (2004) Langmuir 20:2298–2304

    Article  CAS  Google Scholar 

  • Nnuka E, Enejor C (2001) Characterization of Nahunta clay for industrial and commercial applications. Niger J Eng Mater 2(3):9–12

    Google Scholar 

  • Okieimen FE, Maya AO, Oriakhi CO (1988) Sorption of cadmium, lead and zinc ions on sulphur containing chemically modified cellulosic materials. Int J Environ Anal Chem 32:23–27

    Article  CAS  Google Scholar 

  • Prakash N, Sudha PN, Renganathan NG (2012) Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environ Sci Pollut Res. doi:10.1007/s11356-012-0801-8

  • Sadiq M, Zaida TH, Mian AA (1983) Water Air Soil Pollut 20:369–374

    CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995a) Cesium PVC Crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun 32:21–23

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1995b) Determination of lead using poly (vinyl chloride) based crown ether membrane. Analyst 120:495–498

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1996a) PVC-based 2,2,2-cryptand sensors for zinc ions. Anal Chem 68:1272–1275

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Jain S (1996b) A PVC-based benzo-15-crown-5 membrane sensor for cadmium. Electroanalysis 8:938–940

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123(5):461–468

    Article  CAS  Google Scholar 

  • Sun Q, Yang L (2003) The adsorption of basic dyes from aqueous solutions on modified peat–resin particle. Water Res 37:1535–1544

    Article  CAS  Google Scholar 

  • Xu Y, Ren X, Milford A (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA, Stalidis GA (1992) Flotation methods and techniques in wastewater. In: Mavros P, Matis KA (eds) Innovations in flotation technology. Kluwer, Dordrecht, pp 96–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagan Prakash.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, N., Latha, S., Sudha, P.N. et al. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan. Environ Sci Pollut Res 20, 925–938 (2013). https://doi.org/10.1007/s11356-012-0935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0935-8

Keywords

Navigation