Skip to main content
Log in

Nondestructive determination of leaf chlorophyll content in two flowering cherries using reflectance and absorptance spectra

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Leaf chlorophyll quantification is a key technique in tree vigor assessment. Although many studies have been conducted on nondestructive and in-field spectroscopic determination, it is reasonable to develop species-specific chlorophyll indices for accurate determination, because leaf spectra can vary independently of chlorophyll content due to leaf surface and structural differences among species. The present study aimed to develop optimal reflectance and absorptance indices for estimating the leaf chlorophyll content of Cerasus jamasakura (Siebold ex Koidz.) H. Ohba var. jamasakura and Cerasus × yedoensis ‘Somei-yoshino,’ and to examine their performance by comparing them with 46 published chlorophyll indices and SPAD. For 96 and 100 leaf samples, measurements were taken using a spectroradiometer with a leaf-clip attachment and a SPAD-502 chlorophyll meter, and chlorophyll content was determined by extraction with N,N′-dimethylformamide. The optimal leaf chlorophyll indices were then developed systematically by testing eight types of indices. As a result, we confirmed that the optimal chlorophyll indices performed better than any of the published leaf chlorophyll indices or SPAD, giving RMSEs that were approximately twice as good as those for SPAD, and found that the newly proposed index type—a difference and ratio combination type—may be a useful form of chlorophyll content estimation. We also found that absorptance indices achieved equivalent results to reflectance indices despite the hypothesis that absorptance measurement is direct and has more potential. Among the published indices, the reflectance ratio index of Datt [Datt B (1999) Int J Remote Sens 20(14):2741–2759] and the red edge chlorophyll index of Ciganda et al. [Ciganda V, Gitelson A, Schepers J (2009) J Plant Physiol 166:157–167] were effective at estimating the leaf chlorophyll contents of both flowering cherries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams ML, Philpot WD, Norvell WA (1999) Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int J Remote Sens 20(18):3663–3675

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Azia F, Stewart KA (2001) Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. J Plant Nutr 24(6):961–966

    Article  CAS  Google Scholar 

  • Blackburn GA (1998) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19(4):657–675

    Article  Google Scholar 

  • Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58(4):855–867

    Article  CAS  PubMed  Google Scholar 

  • Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14(4):711–722

    Article  Google Scholar 

  • Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Am J Bot 80(3):239–243

    Article  Google Scholar 

  • Carter GA (1994) Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int J Remote Sens 15(3):697–703

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88(4):677–684

    Article  CAS  PubMed  Google Scholar 

  • Castelli F, Contillo R, Miceli F (1996) Non-destructive determination of leaf chlorophyll content in four crop species. J Agron Crop Sci 177:275–283

    Article  CAS  Google Scholar 

  • Chappelle EW, Kim MS, McMurtrey JE III (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens Environ 39:239–247

    Article  Google Scholar 

  • Ciganda V, Gitelson A, Schepers J (2009) Non-destructive determination of maize leaf and canopy chlorophyll content. J Plant Physiol 166:157–167

    Article  CAS  PubMed  Google Scholar 

  • Curran PJ, Dungan JL, Gholz HL (1990) Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol 7:33–48

    CAS  PubMed  Google Scholar 

  • Datt B (1998) Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in Eucalyptus leaves. Remote Sens Environ 66:111–121

    Article  Google Scholar 

  • Datt B (1999) Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int J Remote Sens 20(14):2741–2759

    Google Scholar 

  • Giltelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B Biol 22:247–252

    Article  CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol 148:494–500

    CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN, Lichtenthaler HK (1996) Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J Plant Physiol 148:501–508

    CAS  Google Scholar 

  • Gitelson AA, Keydan GP, Merzlyak MN (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402. doi:10.1029/2006GL026457

    Article  Google Scholar 

  • Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4(2):273–288

    Article  Google Scholar 

  • Imanishi J, Sugimoto K, Morimoto Y (2004) Detecting drought status and LAI of two Quercus species canopies using derivative spectra. Comput Electron Agric 43(2):109–129. doi:10.1016/j.compag.2003.12.001

    Article  Google Scholar 

  • Imanishi J, Morimoto Y, Imanishi A, Sugimoto K, Isoda K (2007) The independent detection of drought stress and leaf density using hyperspectral resolution data. Landscape Ecol Eng 3(1):55–65. doi:10.1007/s11355-007-0019-y

    Article  Google Scholar 

  • Iwasaki F (1990a) Ecological studies on Somei-yoshino (Prunus × yedoensis Matsumura) and related varieties. Bull Agric For Res U Tsukuba 2:95–106 (in Japanese with English abstract)

    Google Scholar 

  • Iwasaki F (1990b) Morphological studies on Somei-yoshino (Prunus × yedoensis Matsumura) and related varieties. Bull Agric For Res U Tsukuba 2:107–125 (in Japanese with English abstract)

    Google Scholar 

  • Kochubey SM, Kazantsev TA (2007) Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. J Plant Physiol 164:1648–1655

    Article  CAS  PubMed  Google Scholar 

  • Kume M, Hioki Y (2006) Relationships between vitality of Prunus × yedoensis Matsum and soil hardness in block parks. J Jpn Soc Reveget Tech 32(1):98–101 (in Japanese with English abstract)

    Google Scholar 

  • Larcher W (2004) Physiological plant ecology (translated by Saeki T, Tateno M). Springer, Japan (in Japanese)

  • le Maire G, François C, Dufréne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89:1–28

    Article  Google Scholar 

  • Levizou E, Drilias P, Psaras GK, Manetas Y (2005) Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytol 165:463–472. doi:10.1111/j.1469-8137.2004.01250.x

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Gitelson A, Lang M (1996) Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J Plant Physiol 148:483–493

    CAS  Google Scholar 

  • Lieth H (1973) Primary production: terrestrial ecosystems. Hum Ecol 4(1):303–332. doi:10.1007/BF01536729

    Google Scholar 

  • Maccioni A, Agati G, Mazzinghi P (2001) New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J Photochem Photobiol B: Biol 61:52–61

    Article  CAS  Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 46:467–472

    Article  CAS  Google Scholar 

  • Masuda T, Iwase Y (1989) Effects of soil conditions on the growth of Prunus yedoensis in Marugame Castle (Kameyama Park). J Jpn Soc Reveget Tech 15(2):36–44 (in Japanese with English abstract)

    Google Scholar 

  • Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE (2005) Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic 104:199–209

    Article  Google Scholar 

  • Ohba H (2001) Cerasus. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan 2b. Kodansha, Tokyo, pp 128–144

    Google Scholar 

  • Ohba H, Kawasaki T, Tanaka H (2007) Flowering cherries of Japan, new edn. Yama-Kei, Tokyo (in Japanese)

  • Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146

    Article  Google Scholar 

  • Pinkard EA, Patel V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. Forest Ecol Manag 223:211–217

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kreidemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Primack R, Higuchi H (2007) Climate change and cherry tree blossom festivals in Japan. Arnoldia 65(2):14–22

    Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • Satomura A, Imanishi J, Morimoto Y, Kojima A (2005) A study of diagnostic indices of vitality of Prunus jamasakura. J Jpn Soc Reveget Tech 31(1):15–20 (in Japanese with English abstract)

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Steele MR, Gitelson AA, Rundquist DC (2008) A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron J 100(3):779–782

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer, Sunderland, p 764

  • Udlling J, Gelang-Alfredsson J, Piikki K, Pleijel H (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91:37–46

    Article  Google Scholar 

  • Vogelmann JE, Rock BN, Moss DM (1993) Red edge spectral measurements from sugar maple leaves. Int J Remote Sens 14(8):1563–1575

    Article  Google Scholar 

  • Wang Q, Chen J, Li Y (2004) Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J Plant Nutr 27(3):557–569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was partly supported by the Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (No. 19780117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Imanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imanishi, J., Nakayama, A., Suzuki, Y. et al. Nondestructive determination of leaf chlorophyll content in two flowering cherries using reflectance and absorptance spectra. Landscape Ecol Eng 6, 219–234 (2010). https://doi.org/10.1007/s11355-009-0101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-009-0101-8

Keywords

Navigation