Skip to main content
Log in

Simultaneous Identification of Vertical and Horizontal Complex Stiffness of Preloaded Rubber Mounts: Transformation of Frequency Response Functions and Decoupling of Degrees of Freedom

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Rubber mounts are widely used to isolate vibrating components. Their complex stiffness characteristics, including dynamic stiffness and loss factors, are highly concerning in terms of vibration analysis and optimization. Rubber mounts show non-linear behavior with preload, leading to difficulty to predict their complex stiffness. Dynamic testing is generally necessary.

Objective

An approach to identify the complex stiffness of preloaded rubber mounts in both vertical and horizontal directions simultaneously is developed.

Methods

Tested Frequency Response Functions (FRF) of a mass suspended by rubber mounts are transformed to an FRF matrix of the mass center to decouple the Z Degrees of Freedom (DOF) and RZ DOF from other DOFs, which allows complex stiffness to be identified from the two decoupled DOFs. A software tool to implement automatically the FRF transformation and parameter identification is developed. An EPDM rubber mount is tested using the device and its complex stiffness is identified using the software to validate the proposed approach.

Results

The driving-point FRFs of the mass center calculated from the identified complex stiffness are very close to the corresponding FRFs determined from the test data. The comparison between the Finite-Element Analysis (FEA) results of the surficial FRFs and the test results shows good consistency as well. Therefore, the proposed approach and its supporting algorithm are validated.

Conclusion

the proposed approach allows for swift identification of high-accuracy complex stiffness of preloaded rubber mounts in both vertical and horizontal directions simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DMA:

Dynamic mechanical analyzer

DOF:

Degree of freedom

FEA:

Finite element analysis

FRF:

Frequency response function

EPDM:

Ethylene Propylene Diene Monomer

NVH:

Noise, Vibration, Harshness

RMS:

Root mean square

SNR:

Signal-to-noise ratio

\(\overline{{\varvec{a}} }\) :

\(\{{\overline{a} }_{x}, {\overline{a} }_{y}, {\overline{a} }_{z}, {\overline{\gamma }}_{x}, {\overline{\gamma }}_{y}, {\overline{\gamma }}_{z}{\}}^{\mathrm{T}}\), Six-DOF acceleration of the mass center

\({{\varvec{a}}}_{ik}\) :

Acceleration of channel i in the impact test of the k-th impact point

\({{\varvec{a}}}_{k}\) :

\({\left\{{a}_{1k}, {a}_{2k}, \cdots , {a}_{Nk}\right\}}^{\mathrm{T}}\), Acceleration of all channels excited at the k-th impact point

\({\overline{{\varvec{a}}} }_{k}\) :

\(\{{\overline{a} }_{xk}, {\overline{a} }_{yk}, {\overline{a} }_{zk}, {\overline{\gamma }}_{xk}, {\overline{\gamma }}_{yk}, {\overline{\gamma }}_{zk}{\}}^{\mathrm{T}}\), Acceleration of mass center excited at the k-th impact point

\({{\varvec{D}}}_{i}\) :

\({\left\{{d}_{xi},{d}_{yi},{d}_{zi}\right\}}^{\mathrm{T}}\), Normalized vector along the acceleration of channel i

\({{\varvec{D}}}_{k}{\prime}\) :

\({\left\{{d}_{xk}{\prime},{d}_{yk}{\prime},{d}_{zk}{\prime}\right\}}^{\mathrm{T}}\), Normalized vector along the impact force of the k-th impact point

\(\overline{{\varvec{f}} }\) :

\(\{{\overline{f} }_{x},{\overline{f} }_{y},{\overline{f} }_{z},{\overline{m} }_{x},\boldsymbol{ }{\overline{m} }_{y},\boldsymbol{ }{\overline{m} }_{z}{\}}^{\mathrm{T}}\), Six-DOF excitation at the mass center

\({f}_{k}{\prime}\) :

Impact force of the k-th impact point

\({\overline{{\varvec{f}}} }_{k}\) :

\({\left\{{\overline{f} }_{xk},{\overline{f} }_{yk},{\overline{f} }_{zk},{\overline{m} }_{xk},\boldsymbol{ }{\overline{m} }_{yk},\boldsymbol{ }{\overline{m} }_{zk} \right\}}^{\mathrm{T}}\), Equivalent impact load acting on the mass center in the impact test of the k-th impact point

\(g\) :

Loss factor

\({g}_{x}\)\({g}_{z}\) :

Loss factors in horizontal and vertical directions, respectively

\({\varvec{H}}\) :

\(\left[{{\varvec{H}}}_{1},{{\varvec{H}}}_{2},\cdots ,{{\varvec{H}}}_{M}\right]\), FRF matrix of all acceleration channels excited at the M impact points

\(\overline{{\varvec{H}} }\) :

Driving-point FRF matrix of mass center from transformation

\({\overline{{\varvec{H}}} }^{\boldsymbol{^{\prime}}}\) :

Driving-point FRF matrix of mass center calculated from the complex stiffness

\({{\varvec{h}}}_{k}\) :

\({\left\{{h}_{1k},{h}_{2k},\cdots ,{h}_{Nk}\right\}}^{\mathrm{T}}\), FRF matrix of all acceleration channels excited at the k-th impact point

\({\overline{h} }_{33}\) :

Third diagonal element of the matrix \(\overline{{\varvec{H}} }\)

\({\overline{h} }_{66}\) :

Sixth diagonal element of the matrix \(\overline{{\varvec{H}} }\)

\({\left|{\overline{h} }_{33}\right|}_{\mathrm{p}}\) :

Peak value of \(\left|{\overline{h} }_{33}\left(\omega \right)\right|\)

\({\left|{\overline{h} }_{66}\right|}_{\mathrm{p}}\) :

Peak value of \(\left|{\overline{h} }_{66}\left(\omega \right)\right|\)

\(k\) :

Dynamic stiffness

\(K\) :

Complex stiffness

\({\varvec{K}}\) :

Complex stiffness matrix

\({K}_{x}\), \({K}_{y}\), \({K}_{z}\) :

Translational complex stiffness in XY, and Z directions, respectively

\({K}_{\theta }\) :

Angular complex stiffness about the axis of the rubber mount

\({k}_{x}\), \({k}_{z}\) :

Dynamic stiffness in horizontal and vertical directions, respectively

\(l\) :

Height of the mass center from the supporting surface of the rubber mounts

M :

Number of impact points

\({\varvec{M}}\) :

\(\mathrm{d}iag (m, m, m, {I}_{x}, {I}_{y}, {I}_{z})\), mass matrix

N :

Acceleration channel quantity

\(r\) :

Distance between the axis of the mass assembly and the axis of any rubber mount

\(R\) :

Distance between the compressor axis and the mount axis

\({{\varvec{T}}}_{\mathrm{a}}\) :

Transformation matrix for acceleration

\({{\varvec{T}}}_{\mathrm{f}}\) :

\(\left[{{\varvec{T}}}_{\mathrm{f}1},{{\varvec{T}}}_{\mathrm{f}2},\cdots ,{{\varvec{T}}}_{\mathrm{f}M}\right]\), transformation matrix for impact forces of all impact points

\({{\varvec{T}}}_{\mathrm{f}k}\) :

Transformation matrix for impact force of the k-th impact point

\(\overline{{\varvec{u}} }\) :

\(\{{\overline{u} }_{x},\boldsymbol{ }{\overline{u} }_{y},{\overline{u} }_{z},\boldsymbol{ }{\overline{\theta }}_{x},\boldsymbol{ }\boldsymbol{ }{\overline{\theta }}_{y},\boldsymbol{ }{\overline{\theta }}_{z}{\}}^{\mathrm{T}}\), six-DOF displacement of the mass center

\(\overline{x },\overline{y },\overline{z }\) :

Coordinates of mass center

\({x}_{i},{y}_{i},{z}_{i}\) :

Accelerometer coordinates of channel i

\({x}_{k}{\prime},{y}_{k}{\prime},{z}_{k}{\prime}\) :

Coordinates of the k-th impact point

\({\lambda }_{33}\) :

Frequency ratio of Z DOF

\({\lambda }_{33,\mathrm{p}}\) :

Frequency ratio at the peak of \(\left|{\overline{h} }_{33}\left(\omega \right)\right|\) curve

\(\Delta \theta\) :

Angular displacement of a compressor about its axis

\(\omega\) :

Angular frequency in rad/s

\({\omega }_{33,\mathrm{p}}\) :

Angular frequency at the peak of \(\left|{\overline{h} }_{33}\left(\omega \right)\right|\)

\({\omega }_{66,\mathrm{p}}\) :

Angular frequency at the peak of \(\left|{\overline{h} }_{66}\left(\omega \right)\right|\)

References

  1. Lee HJ, Kim KJ (2004) Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner. J Sound Vib 272(3–5):607–625

    Article  Google Scholar 

  2. Kim ST, Jeon GJ, Jeong WB (2012) Force identification and sound prediction of a reciprocating compressor for a refrigerator. Trans Korean Soc Noise Vib Eng 22(5):437–443

    Article  Google Scholar 

  3. Loh SK, Faris WF, Hamdi M et al (2011) Vibrational characteristics of piping system in air conditioning outdoor unit. Sci China - Technological Sci 54(5):1154–1168

    Article  MATH  Google Scholar 

  4. Nho (2008) Sik. Non-linear large deformation analysis of elastic rubber mount. J Soc Naval Architects Korea 45(2):186–191

    Article  Google Scholar 

  5. Coja M, Kari L (2021) Using waveguides to model the dynamic stiffness of pre-compressed natural rubber vibration isolators. Polymers 13(11):1–27

    Article  Google Scholar 

  6. ISO (2011) ISO 4664-1 Rubber, vulcanized or thermoplastic - Determination of dynamic properties - Part 1: General guidance

  7. Lapcik L, Augustin P, Pistek A et al (2001) Measurement of the dynamic stiffness of recycled rubber based railway track mats according to the DB-TL 918.071 standard. Appl Acoust 62(9):1123–1128

    Article  Google Scholar 

  8. Kanzenbach L, Oelsch E, Lehmann T et al (2019) Dynamic testing of a specimen setup for combined high precision uniaxial tension- compression tests of rubber. Materials Today - Proceedings 12(2):383–387

    Article  Google Scholar 

  9. Ren LZ, Liu L, Ren ZC (2012) Centrifuge rubber suspension spring characteristics of the experimental research. Appl Mech Mater 157–158:563–566

    Article  Google Scholar 

  10. Gil-Negrete N, Vinolas J, Kari L (2006) A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. J Sound Vib 296(4–5):757–776

    Article  Google Scholar 

  11. Castellucci MA, Hughes AT, Mars WV (2008) Comparison of test specimens for characterizing the dynamic properties of rubber. Exp Mech 48(1):1–8

    Article  Google Scholar 

  12. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523

    Article  Google Scholar 

  13. Beda T (2007) Modeling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J Polym Sci Part B-Polymer Phys 45(13):1713–1732

    Article  Google Scholar 

  14. Goo JH, Ahn T, Bae DS et al (2009) Estimation of dynamic stiffness of a rubber bush. Trans KSME A 33(11):1244–1248

    Article  Google Scholar 

  15. Lee YH, Kim JS, Kim KJ et al (2013) Prediction of dynamic stiffness on rubber components considering preloads. Materialwiss Werkstofftech 44(5):372–379

    Article  Google Scholar 

  16. Ramorino G, Vetturi D, Cambiaghi D et al (2003) Developments in dynamic testing of rubber compounds: Assessment of non-linear effects. Polym Test 22(6):681–687

    Article  Google Scholar 

  17. Ooi LE, Ripin ZM (2011) Dynamic stiffness and loss factor measurement of engine rubber mount by impact test. Mater Des 32(4):1880–1887

    Article  Google Scholar 

  18. Lin TR, Farag NH, Pan J (2005) Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Appl Acoust 66(7):829–844

    Article  Google Scholar 

  19. Park U, Lee JH, Kim K (2021) The optimal design of the mounting rubber system for reducing vibration of the air compressor focusing on complex dynamic stiffness. J Mech Sci Technol 35(2):487–493

    Article  Google Scholar 

  20. Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195(1):103–115

    Article  MATH  Google Scholar 

  21. Atanackovic TM (2002) A modified Zener model of a viscoelastic body. Continuum Mech Thermodyn 14(2):137–148

    Article  MathSciNet  MATH  Google Scholar 

  22. Xia EL, Cao ZL, Zhu XW et al (2021) A modified dynamic stiffness calculation method of rubber isolator considering frequency, amplitude and preload dependency and its application in transfer path analysis of vehicle bodies. Appl Acoust 175:1–10

    Article  Google Scholar 

  23. Long DF, Zhong M, Si WZ et al (2022) Six-degrees-of-freedom dynamic load identification of compressors for refrigeration system based on rigid body dynamics. J Vib Control 0(0):1–12

    Google Scholar 

  24. Ooi LE, Ripin ZM (2014) Impact technique for measuring global dynamic stiffness of engine mounts. Int J Autom Technol 15(6):1015–1026

    Article  Google Scholar 

  25. Tomatsu T, Okada T, Ikeno T et al (2005) A method to identify the stiffness of engine mounts using experimental modal analysis. Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 1: 265–272

  26. Cao SQ, Zhang WD, Xiao LX (2014) Modal analysis of vibrating structures. Tianjin University Press, Edition, p 2

    Google Scholar 

  27. Li JF, Zhang X (2021) Theoretical Mechanics. Tsinghua University Press, Edition, p 3

    Google Scholar 

  28. Lee HW, Ryu SM, Jeong WB et al (2010) Force identification of a rotary compressor and prediction of vibration on a pipe. Trans Korean Soc Noise Vib Eng 20(10):953–959

    Article  Google Scholar 

Download references

Acknowledgements

The study received financial support from Scientific and Technological Innovation Foundation of Foshan, USTB (BK22BE023), Major Fundamental Research of Equipment (514010208-301), International Science and Technology Cooperation Project of Huangpu (2021GH13), and GDAS' Project of Science and Technology Development (2022GDASZH- 2022010108).

Funding

Scientific and Technological Innovation Foundation of Foshan, USTB, BK22BE023, Dong Xiang, Major Fundamental Research of Equipment, 514010208-301, Danfeng Long, International Science and Technology Cooperation Project of Huangpu, 2021GH13, Danfeng Long, GDAS' Project of Science and Technology Development, 2022 GDASZH- 2022010108, Danfeng Long.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Xiang or H. Zhang.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, D., Chen, Q., Xiang, D. et al. Simultaneous Identification of Vertical and Horizontal Complex Stiffness of Preloaded Rubber Mounts: Transformation of Frequency Response Functions and Decoupling of Degrees of Freedom. Exp Mech 63, 1479–1492 (2023). https://doi.org/10.1007/s11340-023-01002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-01002-4

Keywords

Navigation