Skip to main content
Log in

Impact technique for measuring global dynamic stiffness of engine mounts

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Engine mounts are used for engine vibration isolation. The dynamic performance of the mount depends on the orientation. Measurements of the dynamic properties of engine mounts are usually performed in the axial direction because of the problem related to actuator loading direction and set up costs. Impact technique is developed here to measure the dynamic driving point stiffness and driving point shear stiffness of engine mount in a single setup. The compressive and shear frequency-dependent stiffnesses are obtained in the vertical orientation. A transformation matrix is used to calculate the frequency-dependent stiffnesses and loss factors in other orientations. Three different designs of engine mounts are used to verify the accuracy of the transformation model. The correlation coefficient between calculation and measurement results show R2≥ 0.995 along the X- and Y-axes. For the Z-axis, mounts B and C showed R2≥ 0.95 and mount A 0.687 ≤ R2≤ 0.791.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. (1999). Determination of complex moduli of isotropic viscoelastic materials. Polym. Test, 18, 267–279.

    Article  Google Scholar 

  • Ali, E. H., Bruno, M., Alexendre, L. and Eric, J. (2010). Vibration reduction on city buses: Determination of optimal position of engine mounts. Mech. Syst. Signal Pr., 24, 2198–2209.

    Article  Google Scholar 

  • Alkhader, M., Knauss, W. G. and Ravichandran, G. (2012). A new shear-compression test for determining the pressure influence on the shear response of elastomers. Exp. Mech., 52, 1151–1161.

    Article  Google Scholar 

  • Beijers, C. A. J. and Boer, A. D. (2003). Numerical modelling of rubber vibration isolators. 10th Int. Cong. Sound and Vib. Sweden.

    Google Scholar 

  • BS ISO 10846 1–5 (2009). Acoustic and Vibration-Laboratory Measurement of Vibro-acoustic Transfer Properties of Resilient Element.

    Google Scholar 

  • Castellucci, M. A., Hughes, A. T. and Mars, W. V. (2008). Comparison of test specimens for characterizing the dynamic properties of rubber. Exp. Mech., 48, 1–8.

    Article  Google Scholar 

  • Cho, Y. and Kwak, J. (2012). Development of a new analytical model for a railway vehicle equipped with independently rotating wheels. Int. J. Automotive Technology 13, 7, 1047–1056.

    Article  Google Scholar 

  • Chris, M., Anbin, W. and Oliver, B. (2005). Methods for measuring the dynamic stiffness of resilient rail fastenings for low frequency vibration isolation of railways, their problems and possible solutions. J. Low Freq. Noise, Vib. and Active Control 24, 2, 107–116.

    Article  Google Scholar 

  • Fenander, A. (1997). Frequency dependent stiffness and damping of rail pads. Proc. IMechE Part F: J. Rail and Rapid Transit, 211, 51–62.

    Article  Google Scholar 

  • Gent, A. N. (2001). Engineering with Rubber: How to Design Rubber Components. 2nd edn. Hanser Publishers. Munich.

    Google Scholar 

  • Gwak, M., Jo, K. and Sunwoo, M. (2013). Neural-network multiple models filter (NMM)-based position estimation system for autonomous vehicles. Int. J. Automotive Technology 14, 2, 265–274.

    Article  Google Scholar 

  • He, S. and Singh, R. (2005). Estimation of amplitude and frequency dependent parameters of hydraulic engine mount given limited dynamic stiffness measurements. Noise Control Eng. J. 53, 6, 271–285.

    Article  Google Scholar 

  • Henoi, F. and Peter, F. (2004). Applications of hydraulic actuators for damping and isolation of structural oscillations. Proc. Third European Conf. Struc. Control, Austria.

    Google Scholar 

  • Jeong, T. and Singh, R. (2000). Analytical methods of decoupling the automotive engine torque roll axis. J. Sound Vib. 234, 1, 85–114.

    Article  Google Scholar 

  • Jie, Z. and Christopher, M. R. (2007). Parameter identification of analytical and experimental rubber isolators represented by maxwell models. Mech. Syst. Signal Pr., 21, 2814–2832.

    Article  Google Scholar 

  • Kim, S. and Singh, R. (2001a). Multi-dimensional characterization of vibration isolators over a wide range of frequencies. J. Sound Vib. 245, 5, 877–913.

    Article  Google Scholar 

  • Kim, S. and Singh, R. (2001b). Vibration transmission through an isolator modeled by continuous system theory. J. Sound Vib. 248, 5, 925–953.

    Article  Google Scholar 

  • Ko, Y. H., Ooi, L. E. and Ripin, Z. M. (2011). The design and development of suspended handles for reducing hand-arm vibration in petrol driven grass trimmer. Int. J. Ind. Ergon., 41, 459–470.

    Article  Google Scholar 

  • Koizumi, T., Tsujiuchi, N. and Yamazaki, K. (2003). Vibration of engine supported with hydraulic engine mounts. IMAC-XXI: Conf. Expo on Struct. Dyn-Smart Struct. and Transducer.

    Google Scholar 

  • Mars, W. V. and Fatemi, A. (2004). A novel specimen for investigating the mechanical behavior of elastomers under multi-axial loading conditions. Exp. Mech. 44, 2, 136–146.

    Article  Google Scholar 

  • Misa, R. and Kamaruddin, A. M. (2010). On the variation of the experimental shear modulus of elastomers. IOP Conf. Ser.: Mater. Sci. Eng. 11,012007. doi:10.1088/1757-899X/11/1/012007.

    Article  Google Scholar 

  • Mundo, D. and Mas, P. and Clausi, D. (2006). Dynamic characterization and numerical modeling of automotive rubber connections. Proc. IMechE Part D: J. Automob. Eng., 220, 425–434.

    Article  Google Scholar 

  • Nader, V. and Saunders, L. K. L. (2002). High frequency testing of rubber mounts. ISA T., 41, 145–154.

    Article  Google Scholar 

  • Nashief, A. D., Jones, D. I. and Henderson, J. P. (1984). Vibration Damping. John Wiley & Sons. New York.

    Google Scholar 

  • Newland, D. E. (2005). Mechanical Vibration Analysis and Computation. Dover Publications. New York. Chapter 3.

    Google Scholar 

  • Olivier, M., Francois, H., Killian, B. and Antoine, N. (2012). Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J. Biomech., 45, 978–984.

    Article  Google Scholar 

  • Ooi, L. E. and Ripin, Z. M. (2010). Dynamic analysis of engine mounts at different orientations. 4th Int. Conf. Exp. Mech., Proc. SPIE, Vol.7522:752238, Singapore, November 18, 2009.

    Google Scholar 

  • Ooi, L. E. and Ripin, Z. M. (2011). Dynamic stiffness and loss factor measurement of engine rubber mount by impact test. Mater. Design, 32, 1880–1887.

    Article  Google Scholar 

  • Park, J. and Singh, R. (2007) Effect of engine mount damping on the torque rolls axis decoupling. SAE Paper, doi: 10.4271/2007-01-2418_2007.

    Google Scholar 

  • Park, J. and Singh, R. (2008). Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system. J. Sound Vib., 313, 841–857.

    Article  Google Scholar 

  • Park, J. Y. and Singh, R. (2010). Role of spectrally varying mount properties in influencing coupling between powertrain motions under torque excitation. J. Sound Vib., 329, 2895–2914.

    Article  Google Scholar 

  • Payne, A. R. (1962). Effect of compression on the shear modulus of rubber. Ind. Eng. Chem. Prod. Res. Dev. 1, 2, 86–88.

    Article  Google Scholar 

  • Per-Erik, A. and Anders, K. O. (2012). Considering amplitude dependence during cyclic loading of elastomers using an equivalent viscoelastic approach. Polym. Test, 21, 909–915.

    Google Scholar 

  • Piersol, A. G. and Paez, T. L. (2010). Harris’ Shock and Vibration Handbook. 6th edn. McGraw-Hill. New York. Chapter 3.

    Google Scholar 

  • Rao, M. D., Scott, G. and Dave, G. (2001). Measurement of dynamic parameters of automotive exhaust hangers. SAE Technical Paper Series, doi: 10.4271/2001-01-1446.

    Google Scholar 

  • Robert, M. H. (Accessed 12 November 2012). How to select vibration isolator for OEM machinery & equipment. http://www.bdproduct.ca/barry%20pdfs/oem.pdf.

  • Singh, R. and Kim, S. (2003). Examination of multidimensional vibration isolation measures and their correlation to sound radiation over a broad frequency range. J. Sound Vib., 262, 419–455.

    Article  MathSciNet  Google Scholar 

  • Snyman, J. A., Heyns, P. S. and Vermeulen, P. J. (1995). Vibration isolation of a mounted engine through optimization. Mech. Mach. Theory 30, 1, 109–118.

    Article  Google Scholar 

  • Spiekermann, C. E., Radcliffe, C. J. and Goodman, E. D. (1985). Optimal design and simulation of vibrational isolation systems. J. Mech. Trans., 107, 271–276.

    Article  Google Scholar 

  • Sudhir, K. and Anoop, K. D. (2009). Engine mount optimization for vibration isolation in motorcycles. Veh. Syst. Dyn. 47, 4, 419–436.

    Article  Google Scholar 

  • Tao, J. S., Liu, G. R. and Lam, K. Y. (2000). Design optimization of marine engine mount system. J. Sound Vib. 235, 3, 477–494.

    Article  Google Scholar 

  • Tian, R. L., Nabir, H. F. and Jie, P. (2005). Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Appl. Acoust., 66, 829–844.

    Article  Google Scholar 

  • Ungar, E. E. and Dietrich, C. W. (1966). High frequency vibration isolation. J. Sound Vib. 4, 2, 224–241.

    Article  Google Scholar 

  • Woodbury, G. (2002). Introduction to Statistics. Duxbury. Canada. Chapter 9.

    Google Scholar 

  • Xu, Y., Liu, Y., Kan, C., Shen, Z. and Shi, Z. (2009). Experimental research on fatigue property of steel rubber vibration isolator for off shore jacket platform in cold environment. Ocean Eng., 36, 588–594.

    Article  Google Scholar 

  • Yu, Y. H., Saravanan, M. P., Nagi, G. N. and Rao, V. D. (2001). Automotive vehicle engine mounting systems: A survey. J. Dyn. Sys., Meas., Control 123, 2, 186–194.

    Article  Google Scholar 

  • Zheng, H., Liu, G. R., Tao, J. S. and Lam, K. Y. (2001). FEM/BEM analysis of diesel piston-slap induced ship hull vibration and underwater noise. Appl. Acoust., 62, 341–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Ripin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, L.E., Ripin, Z.M. Impact technique for measuring global dynamic stiffness of engine mounts. Int.J Automot. Technol. 15, 1015–1026 (2014). https://doi.org/10.1007/s12239-014-0106-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-014-0106-7

Key Words

Navigation