Skip to main content
Log in

Hybrid Multiview Correlation for Measuring and Monitoring Thermomechanical Fatigue Test

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the development of fully-coupled 3D thermomechanical field measurement techniques applied for monitoring thermal fatigue tests. First, an original hybrid and multiview system composed of one infrared (IR) camera and two visible light cameras is introduced. The spatial registration of multimodal imaging devices is solved successfully using global Hybrid Multiview Correlation (HMC) based on the NURBS representation of the 3D calibration target and the surface of interest. The measurement uncertainties are estimated with an initial heating up phase prior to the fatigue test. Then, HMC is performed to measure the 3D surface displacement and temperature fields during laser shocks onto an austenitic stainless steel plate. Last, the HMC measurements are validated in comparison with finite element simulations of the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Fissolo A, Amiable S, Ancelet O et al (2009) Crack initiation under thermal fatigue: an overview of CEA experience. Part I: thermal fatigue appears to be more damaging than uniaxial isothermal fatigue. Int J Fatigue 31(3):587–600

    Article  Google Scholar 

  2. Fissolo A, Gourdin C, Ancelet O et al (2009) Crack initiation under thermal fatigue: an overview of CEA experience: part II (of II): application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage. Int J Fatigue 31(7):1196–1210

    Article  Google Scholar 

  3. Le Duff JA, Tacchini B, Stephan JM et al (2011) High cycle thermal fatigue issues in RHRS mixing tees and thermal fatigue test on a representative 304 L mixing zone. In: ASME 2011 pressure vessels and piping conference. American Society of Mechanical Engineers, pp 691–699

  4. Paffumi E, Nilsson KF, Szaraz Z (2015) Experimental and numerical assessment of thermal fatigue in 316 austenitic steel pipes. Eng Fail Anal 47:312–327

    Article  Google Scholar 

  5. Taheri S, Julan E, Tran XV, Robert N (2017) Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations. Nucl Eng Des 311:16–27

    Article  Google Scholar 

  6. Metzner KJ, Wilke U (2005) European THERFAT project—thermal fatigue evaluation of piping system “tee”-connections. Nucl Eng Des 235(2-4):473–484

    Article  Google Scholar 

  7. Cacuci DG (2010) Handbook of nuclear engineering. Volume I: nuclear engineering fundamentals. Springer, New York

    Book  Google Scholar 

  8. Vincent L, Poncelet M, Roux S, Hild F, Farcage D (2013) Experimental facility for high cycle thermal fatigue tests using laser shocks. Proc Eng 66:669–675

  9. Charbal A, Vincent L, Hild F, Poncelet M, Dufour JE, Roux S, Farcage D (2016) Characterization of temperature and strain fields during cyclic laser shocks. Quant IR Therm J 13(1):1–18

  10. Wang Y, Charbal A, Hild F, Vincent L (2018) High cycle thermal fatigue of austenitic stainless steel. In: MATEC web of conferences, vol 165. EDP Sciences

  11. Luong MP (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater 28(1-4):155–163

    Article  Google Scholar 

  12. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22(1):65–73

    Article  Google Scholar 

  13. Yang B, Liaw PK, Wang H, Jiang L, Huang JY, Kuo RC, Huang JG (2001) Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Mater Sci Eng A 314(1-2):131–139

    Article  Google Scholar 

  14. Wagner D, Ranc N, Bathias C, Paris PC (2010) Fatigue crack initiation detection by an infrared thermography method. Fatigue Fract Eng Mater Struct 33(1):12–21

    Google Scholar 

  15. Plekhov O, Palin-Luc T, Saintier N, Uvarov S, Naimark O (2005) Fatigue crack initiation and growth in a 35CrMo4 steel investigated by infrared thermography. Fatigue Fract Eng Mater Struct 28(1-2):169–178

    Article  Google Scholar 

  16. Sutton MA, Orteu J, Schreier HW (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer, Boston, MA (USA)

  17. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin–Le Châtelier bands. Exp Mech 46(6):789–803

    Article  Google Scholar 

  18. Vanlanduit S, Vanherzeele J, Longo R, Guillaume P (2009) A digital image correlation method for fatigue test experiments. Opt Lasers Eng 47(3-4):371–378

    Article  Google Scholar 

  19. Rabbolini S, Beretta S, Foletti S, Cristea ME (2015) Crack closure effects during low cycle fatigue propagation in line pipe steel: an analysis with digital image correlation. Eng Fract Mech 148:441–456

    Article  Google Scholar 

  20. Roux-Langlois C, Gravouil A, Baietto MC, Réthoré J, Mathieu F, Hild F, Roux S (2015) DIC identification and X-FEM simulation of fatigue crack growth based on the Williams’ series. Int J Solids Struct 53:38–47

    Article  Google Scholar 

  21. Rupil J, Roux S, Hild F, Vincent L (2011) Fatigue microcrack detection with digital image correlation. J Strain Anal Eng Des 46(6):492–509

    Article  Google Scholar 

  22. Tomičević Z, Roux S, Hild F (2016) Evaluation of fatigue crack network growth in cast iron for different biaxial loading paths via full-field measurements. Int J Fatigue 92:281–303

    Article  Google Scholar 

  23. Nowell D, Kartal ME, De Matos PFP (2013) Digital image correlation measurement of near-tip fatigue crack displacement fields: constant amplitude loading and load history effects. Fatigue Fract Eng Mater Struct 36(1):3–13

    Article  Google Scholar 

  24. Corigliano P, Epasto G, Guglielmino E, Risitano G (2017) Fatigue analysis of marine welded joints by means of DIC and IR images during static and fatigue tests. Eng Fract Mech 183:26–38

    Article  Google Scholar 

  25. Wang X, Witz JF, El Bartali A, Jiang C (2016) Infrared thermography coupled with digital image correlation in studying plastic deformation on the mesoscale level. Opt Lasers Eng 86:264–274

    Article  Google Scholar 

  26. Benaarbia A, Chrysochoos A, Robert G (2016) Thermomechanical analysis of the onset of strain concentration zones in wet polyamide 6.6 subjected to cyclic loading. Mech Mater 99:9–25

    Article  Google Scholar 

  27. Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Mater Sci Eng A 501(1-2):52–60

    Article  Google Scholar 

  28. Seghir R, Charkaluk E, Dufrénoy P, Bodelot L (2010) Thermomechanical couplings in crystalline plasticity under fatigue loading. Proc Eng 2(1):1155–1164

  29. Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by digital image correlation and infrared thermography. Mech Mater 43(11):654–670

    Article  Google Scholar 

  30. Silva ML, Ravichandran G (2011) Combined thermoelastic stress analysis and digital image correlation with a single infrared camera. J Strain Anal Eng Desi 46(8):783–793

    Article  Google Scholar 

  31. Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2012) One-shot measurement of thermal and kinematic fields: infrared image correlation (IRIC). Exp Mech 52(3):241–255

    Article  Google Scholar 

  32. Charbal A, Roux S, Hild F, Vincent L (2018) Regularised digital-level corrections for infrared image correlation. Quant IR Thermog J 15(2):172–193

  33. Luo PF, Chao YJ, Sutton MA, Peters WH (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2):123–132

    Article  Google Scholar 

  34. Orteu J-J (2009) 3-D computer vision in experimental mechanics. Opt Lasers Eng 47(3-4):282–291

    Article  Google Scholar 

  35. Beaubier B, Dufour JE, Hild F, Roux S, Lavernhe S, Lavernhe-Taillard K (2014) CAD-based calibration and shape measurement with stereoDIC. Exp Mech 54(3):329–341

    Article  Google Scholar 

  36. Dufour JE, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements with stereo-DIC. Exp Mech 55(9):1657–1668

    Article  Google Scholar 

  37. Prakash S, Lee PY, Caelli T (2006) 3D mapping of surface temperature using thermal stereo. In: Control, automation, robotics and vision, 2006. ICARCV'06. 9th international conference on. IEEE, pp 1–4

  38. Orteu JJ, Rotrou Y, Sentenac T, Robert L (2008) An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: principle and preliminary results. Exp Mech 48(2):163–179

    Article  Google Scholar 

  39. Rzeszotarski D, Więcek B (2007) Thermal images 3D reconstruction with use of stereovision system. In: 15th international conference on thermal engineering and Thermogrammetry (THERMO), pp 27–29

  40. Rzeszotarski D, Więcek B (2012) An integrated thermal and visual camera system for 3D reconstruction. Proc 11th International Conference on Quantitative InfraRed Thermography, Naples (Italy)

  41. Charbal A, Dufour JE, Hild F, Poncelet M, Vincent L, Roux S (2016) Hybrid stereocorrelation using infrared and visible light cameras. Exp Mech 56(5):845–860

    Article  Google Scholar 

  42. Charbal A et al (2017) Hybrid stereocorrelation for 3D thermomechanical field measurements. In: Advancement of optical methods in experimental mechanics, Volume 3. Springer, Cham, pp 83–88

  43. Besnard G, Lagrange JM, Hild F, Roux S, Voltz C (2010) Characterization of necking phenomena in high-speed experiments by using a single camera. EURASIP J Im Vid Proc 2010(1):215956

  44. Poncelet M, Doudard C, Calloch S, Hild F, Weber B (2012) Utilisation de l'imagerie IR pour l'étude de la fatigue des aciers: Premières observations d'effets de surface. Instrum, Me, Métrol 12(1-2):107–129

  45. Charbal A, Dufour JE, Guery A et al (2016) Integrated digital image correlation considering gray level and blur variations: application to distortion measurements of IR camera. Opt Lasers Eng 78:75–85

    Article  Google Scholar 

  46. Yoon HW, Allen DW, Saunders RD (2005) Methods to reduce the size-of-source effect in radiometers. Metrologia 42(2):89

    Article  Google Scholar 

  47. Charbal A, Roux S, Hild F, Vincent L (2018) Spatiotemporal regularization for digital image correlation: application to infrared camera frames. Int J Numer Methods Eng 114(12):1331–1349

    Article  Google Scholar 

  48. Cheng P, Sutton MA, Schreier HW, McNeill SR (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 42(3):344–352

    Article  Google Scholar 

  49. Réthoré J, Elguedj T, Simon P, Coret M (2010) On the use of NURBS functions for displacement derivatives measurement by digital image correlation. Exp Mech 50(7):1099–1116

    Article  Google Scholar 

  50. Dufour JE, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal Eng Des 50(7):470–487

    Article  Google Scholar 

  51. Piegl L, Tiller W (2012) The NURBS book. Springer Science & Business Media, Heidelberg

    MATH  Google Scholar 

  52. Pluim JP, Maintz JA, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 452–461

  53. Tudisco E, Jailin C, Mendoza A et al (2017) An extension of digital volume correlation for multimodality image registration. Meas Sci Technol 28(9):095401

    Article  Google Scholar 

  54. Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46(2):185–196

    Article  Google Scholar 

  55. Casquero H, Liu L, Zhang Y, Reali A, Gomez H (2016) Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput Methods Appl Mech Eng 301:164–186

    Article  MathSciNet  MATH  Google Scholar 

  56. Charbal A (2017) Mesure de champs thermomécaniques pour l'étude de la fatigue par chocs thermiques (Doctoral dissertation, Paris Saclay)

  57. AFCEN (2012) RCC-MRx: Design and Construction Rules for Mechanical Components in high-temperature structures, experimental reactors and fusion reactors AFCEN, Paris (France)

  58. Wang Y, Charbal A, Hild F, Roux S, Vincent L (2019) Crack initiation and propagation under thermal fatigue of austenitic stainless steel. Int J Fat 124:149–166

Download references

Acknowledgments

This work was supported within the GENIV program of Commissariat à l’énergie atomique et aux énergies alternatives (CEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Charbal, A., Dufour, J. et al. Hybrid Multiview Correlation for Measuring and Monitoring Thermomechanical Fatigue Test. Exp Mech 60, 13–33 (2020). https://doi.org/10.1007/s11340-019-00500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-019-00500-8

Keywords

Navigation