Skip to main content
Log in

Validation of Registration Techniques Applied to XRD Signals for Stress Evaluations in Titanium Alloys

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

To estimate stresses near specimen surfaces, X-ray diffraction (XRD) is applied to titanium alloys. Some of these alloys are difficult to study since they are composed of various phases of different proportions, shapes and scales. For millimetric probed volumes, such multi-phase microstructures induce shallow and noisy diffraction signals. Two peak registration techniques are introduced and validated thanks to tensile tests performed on two titanium alloy samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. The resolution of a measuring system is the “smallest change in a quantity being measured that causes a perceptible change in the corresponding indication” [48].

References

  1. Hill M (2016) Engineering residual stress in aerospace forgings. Mater Res Proc 2:61–66

    Google Scholar 

  2. Cox A, Villain-Chastre J-P, Turner S, Jackson M (2015) The effect of finish milling on the surface integrity and surface microstructure in Ti-5Al-5Mo-5V-3Cr. In: 13th world conference on titanium

  3. Aeby-Gautier E, Settefrati A, Bruneseaux F, Appolaire B, Denand B, Dehmas M, Geandier G, Boulet P (2013) Isothermal α formation in β metastable titanium alloys. J Alloys Compd 577S:439–443

    Article  Google Scholar 

  4. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin

    Google Scholar 

  5. Guillemot N, Lartigue C, Billardon R, Mawussi B (2010) Prediction of the endurance limit taking account of the microgeometry after finishing milling. Int J Interact Des Manuf 4:239–249

    Article  Google Scholar 

  6. Souto-Lebel A, Guillemot N, Lartigue C, Billardon R (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. In: 1st CIRP conference on surface integrity (CSI), vol 19, pp 343–348

  7. E837-13a ASTM (2015) Standard test method for determining residual stresses by the hole-drilling strain-gage method. ASTM international

  8. Prime M (2001) Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol 123(2):162–168

    Article  Google Scholar 

  9. Reed Reed E C, Viens J A (1960) The influence of surface residual stress on fatigue limit of titanium. J Eng Ind 82(1):82–76

  10. Fitzpatrick ME, Fry AT, Holdway P, Kandil FA, Shackleton J, Suominen L (2005) Determination of residual stresses by x-ray diffraction - issue 2. ISSN 1744–3911

  11. Freour S, Gloaguen D, François M, Guillen R, Girard E (2002) Determination of the macroscopic elastic constants of a phase embedded in a multiphase polycrystal - application to the beta-phase of Ti17 titanium based alloy. Mater Sci Forum Trans Tech Publ Inc 404–407:723–728

    Article  Google Scholar 

  12. 15305 EN (2009) Non-destructive testing, test method for residual stress analysis by X-ray diffraction. In: AFNOR

  13. Cullity B D (1957) Elements of x-ray diffraction. Am J Phys 25:394

    Article  Google Scholar 

  14. Hauk V (1997) Structural and residual stress analysis by non destructive methods: evaluation, application, assessment. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  15. Pfeiffer W, Reisacher E (2016) Evaluation of thickness and residual stress of shallow surface regions from diffraction profiles. Mater Res Proc 2:317–322

  16. Lefebvre F, François M, Cacot J, Hemery C, Le-Bec P, Baumhauer E, Bouscaud D, Bergey T, Blaize D, Gloaguen D, Lebrun J L, Cosson A, Kubler R, Cheynet Y, Daniel E, Michaud H, Monvoisin JC, Blanchet P, Allain P, Mrini Y, Sprauel J M, Goudeau P, Barbarin P, Charles C, Le Roux JM, Seiler W, Fischer C, Desmas L, Ouakka A, Moya MJ, Bordiec Y (2011) External reference samples for residual stress analysis by x-ray diffraction. Mater Sci Forum 681:215–222

    Article  Google Scholar 

  17. Suominen L, Rickert T, Send S (2016) Residual stress measurement of Ti-metal samples by means of XRD with Ti and Cu radiation. Mater Res Proc 2:61–66

  18. Withers P-J, Daymondb M-R, Johnsonb MW (2001) The precision of diffraction peak location. J Appl Cryst 34(Part 6):737–743

    Article  Google Scholar 

  19. Stressdiff. http://www.inel.fr

  20. Leptos by Bruker. https://www.bruker.com

  21. Noyan IC, Cohen JB (1987) Residual stresses: measurements by diffraction and interpretation. Springer, New York

    Book  Google Scholar 

  22. Geandier G, Renault P-O, Le Bourhis E, Goudeau Ph, Faurie D, Le Bourlot C, Djemia Ph, Castelnau O, Cherif S (2010) Elastic strain distribution in metallic filmpolymer substrate composites. Appl Phys Lett 96:041905

  23. Geandier G, Thiaudière D, Randriamazaoro R N, Chiron R, Djaziri S, Lamongie B, Diot Y, Le Bourhis E, Renault P O, Goudeau P, Bouaffad A, Castelnau O, Faurie D, Hild F (2010) Development of a synchrotron biaxial tensile device for in-situ characterization of thin films mechanical response. Rev Sci Instrum 81(103903)

  24. Rekik M, Hubert O, Daniel L, Raka B, Mella P, Aimedieu P (2013) Dispositif de mesure du comportement magnéto-mécanique d’un alliage de fer-silicium sous chargement mécanique multiaxial. In: Congrès Fran?ais de Mécanique

  25. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  26. Djaziri S, Renault PO, Hild F, Le Bourhis E, Goudeau P, Thiaudière D, Faurie D (2011) Combined synchrotron x-ray and image-correlation analyses of biaxially deformed w/cu nanocomposite thin films on kapton. J Appl Cryst 44:1071–1079

    Article  Google Scholar 

  27. Djaziri S, Faurie D, Le Bourhis E, Goudeau Ph, Renault PO, Mocuta C, Thiaudière D, Hild F (2013) Investigation of the elastic-plastic transition of nanostructured thin film under controlled biaxial deformation. Thin Solid Films 530:30–34

    Article  Google Scholar 

  28. Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties—a review. Strain 42:69–80

    Article  Google Scholar 

  29. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157

    Article  MATH  Google Scholar 

  30. Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties, volume LNCS 5496, pages 161–171. Springer, Berlin

    Google Scholar 

  31. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Meth Eng 84(6):631–660

    Article  MATH  Google Scholar 

  32. Réthoré J, Muhibullah T. Elguedj, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital images using {3D} kinematics. Int J Solids Struct 50 (1):73–85

    Article  Google Scholar 

  33. Beaubier B, Dufour JE, Hild F, Roux S, Lavernhe-Taillard S, Lavernhe-Taillard K (2014) CAD-based calibration of a 3D-DIC system: principle and application on test and industrial parts. Exp Mech 54(3):329–341

    Article  Google Scholar 

  34. Dufour J-E, Beaubier B, Hild F, Roux S (2015) CAD-based displacement measurements. Principle and first validations. Exp Mech 55(9):1657–1668

    Article  Google Scholar 

  35. Dufour J-E, Hild F, Roux S (2015) Shape, displacement and mechanical properties from isogeometric multiview stereocorrelation. J Strain Anal 50(7):470–487

    Article  Google Scholar 

  36. Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4d mechanical correlation. Adv Mech Simul Eng Sci 3(1):1–26

    Article  Google Scholar 

  37. Boyer R, Briggs R (2005) The use of beta titanium alloys in the aerospace industry. J Mater Eng Perform 14:681–685

    Article  Google Scholar 

  38. E112-96 (1997) Standard test method for determining average grain size. In: AFNOR, pp 227–49

  39. Lu J (1996) Handbook of measurement of residual stresses. Society for Experimental Mechanics

  40. Voillot B, Hild F, Lebrun JL, Billardon R (2015) Evaluation of residual stresses due to mechanical treatment of Ti5553 alloy via XRD. In: Proc. 13th world conference on titanium, chapter 268

  41. Duval T, Villechaise P, Andrieu S (2011) Mechanical properties and strain mechanisms analysis in Ti5553 titanium alloy. The Minerals, Metals & Materials Society (TMS)

  42. Voillot B, Aimedieu P, Mella P, Lebrun JL, Hild F (2015) Evaluation des contraintes residuelles induites par traitements mecaniques dans un alliage de titane bi-phase par trois methodes de depouillement differentes. In: Proc. Congrès Mécamat

  43. Bertin M, Hild F, Roux S, Mathieu F, Leclerc H, Aimedieu P (2016) Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. J Strain Anal 51(2):118–131

    Article  Google Scholar 

  44. Leyens C, Peters M (2003) Titanium and titanium alloys: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  45. Fréour S, Gloaguen D, François M, Guillen R (2003) Influence of a two-phase microstructure on XEC and XRD stress analysis. Rev Métal 12:1185–1191

    Article  Google Scholar 

  46. Bruno G, Dunn BD (2004) Surface and bulk residual stress in Ti6Al4V welded aerospace tanks. Pressure Vessel Technol 126(3):284–292

    Article  Google Scholar 

  47. Hild F, Roux S (2012) Digital image correlation. In: Optical Methods for Solid Mechanics. A Full-Field Approach, P. Rastogi and E. Hack (eds.), pages 183–228. Wiley-VCH, Weinheim

    Google Scholar 

  48. ISO/IEC guide 99-12:2007 (2007) International vocabulary of metrology - basic and general concepts and associated terms, VIM. International Organization for Standardization, Geneva

    Google Scholar 

  49. Martin G (2012) Simulation numerique multi-echelles du comportement mecanique des alliages de titane beta-metastable Ti5553 et Ti17. PhD thesis, Ecole Nationale Superieure des Mines de Paris

  50. Fréour S, Lacoste E, François M, Guillén R (2011) Determining ti-17 β-phase single-crystal elasticity constants through x-ray diffraction and inverse scale transition model. In: Materials Science Forum, vol 681, pp 97–102. Trans Tech Publ

  51. Herbig M (2011) D short fatigue crack investigation in beta titanium alloys using phase and diffraction contrast tomography. PhD thesis, INSA Lyon

Download references

Acknowledgements

This work was funded by Safran Landing Systems. The authors acknowledge Pierre Mella for providing Ti64 alloy and useful discussions on XRD analyses. The authors also thank Adam Cox for providing Ti5553 alloy samples and Thierry Bergey for electropolishing them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Voillot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 9.76 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voillot, B., Lebrun, JL., Billardon, R. et al. Validation of Registration Techniques Applied to XRD Signals for Stress Evaluations in Titanium Alloys. Exp Mech 58, 1265–1280 (2018). https://doi.org/10.1007/s11340-018-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0391-6

Keywords

Navigation