Skip to main content
Log in

A Dynamic Inflation Test for Soft Materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We developed a dynamic inflation experiment to measure the elastodynamic behavior of soft materials. In the experiments, a shock tube was used to apply dynamic pressurization to thin polydimethylsiloxane specimens. Two high-speed cameras were used to image the deforming specimen and three-dimensional digital image correlation was used to determine the three-dimensional displacement field of the specimen surface. We applied dynamic Kirchhoff plate bending theory and concepts from structural dynamics to derive a mathematical expression for the dynamic Young’s modulus. The phase velocity of the initial transverse wave propagation response and the vibration frequency of the long-time response were captured during our experiments and were applied in the calculation of the dynamic Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Appleby-Thomas GJ, Hazell PJ, Wilgeroth JM, Shepherd CJ, Wood DC, Roberts A (2011) On the dynamic behavior of three readily available soft tissue simulants. J Appl Phys 109. doi:10.1063/1.3573632

  2. Ari AB (2006) Eye injuries on the battlefields of Iraq and Afghanistan: public health implications. Optometry 77(7):329–39. doi:10.1016/j.optm.2006.03.015. http://www.ncbi.nlm.nih.gov/pubmed/16814236

  3. Bailoor S, Bhardwaj R, Nguyen TD (2015) Effectiveness of eye armor during blast loading. Biomech Model Mechanobiol. doi:10.1007/s10237-015-0667-z. http://www.ncbi.nlm.nih.gov/pubmed/25828209

    Google Scholar 

  4. Bisplinghoff JA, McNally C, Manoogian SJ, Duma SM (2009) Dynamic material properties of the human sclera. J Biomech 42(10):1493–7. doi:10.1016/j.jbiomech.2009.03.043. http://www.ncbi.nlm.nih.gov/pubmed/19428016

    Article  Google Scholar 

  5. Boyce BL, Grazier JM, Jones RE, Nguyen TD, Nguyen JMG (2008) Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29(28):3896–3904. doi:10.1016/j.biomaterials.2008.06.011. http://www.ncbi.nlm.nih.gov/pubmed/18603294

    Article  Google Scholar 

  6. Cernak I, Noble-Haeusslein L (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30(2):255. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=47846416&site=ehost-live&scope=site

  7. Champion HR, Holcomb JB, Young LA (2009) Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma 66(5):1468–77. doi:10.1097/TA.0b013e3181a27e7f. discussion 1477. http://www.ncbi.nlm.nih.gov/pubmed/19430256

  8. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley Ha, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53(4):1714–28. doi:10.1167/iovs.11-8009

    Article  Google Scholar 

  9. DePalma RG, Burris DG, Champion HR, Hodgson MJ (2005) Blast injuries. N Engl J Med 352 (13):1335–42. doi:10.1056/NEJMra042083. http://www.ncbi.nlm.nih.gov/pubmed/15800229

    Article  Google Scholar 

  10. Doyle BJ, Corbett TJ, Cloonan AJ, O’Donnell MR, Walsh MT, Vorp DA, McGloughlin TM (2009) Experimental modelling of aortic aneurysms: novel applications of silicone rubbers. Med Eng Phys 31(8):1002

    Article  Google Scholar 

  11. Ellis B, Smith R (2008) Polymers: A Property Database, 2nd Edn. CRC Press. https://books.google.com/books?id=S-TKBQAAQBAJ

  12. Elsheikh A, Anderson K (2005) Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2(3):177–85. doi:10.1098/rsif.2005.0034

  13. Fan JT, Weerheijm J, Sluys LJ (2015) High-strain-rate tensile mechanical response of a polyurethane elastomeric material. Polymer 65:72

    Article  Google Scholar 

  14. Ferreira P, Carvalho Á, Correia TR, Antunes BP, Correia IJ, Alves P (2013) Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses. Sci Technol Adv Mater 14 (5):055,006. http://stacks.iop.org/1468-6996/14/i=5/a=055006

  15. Flavell W (1972) Fibres, films, plastics and rubbers. w. j. roff and j. r. scott. butterworths, london. 1971. pp. 688. price 15.00. British Polymer Journal 4(3):267–268. doi:10.1002/pi.4980040314

    Article  Google Scholar 

  16. Friberg TR, Lace JW (1988) A comparison of the elastic properties of human choroid and sclera. Exp Eye Res 47(3):429. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=3181326&site=ehost-live&scope=site

  17. Hamilton KE, Pye DC (2008) Young’s modulus in normal corneas and the effect on applanation tonometry. Optometry And Vision Science: Official Publication Of The American Academy Of Optometry 85(6):445. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=18521022&site=ehost-live&scope=site

    Article  Google Scholar 

  18. Hines-Beard J, Marchetta J, Gordon S, Chaum E, Geisert EE, Rex TS (2012) A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage. Exp Eye Res 99:63. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=22504073&site=ehost-live&scope=site

    Article  Google Scholar 

  19. Johnston ID, McCluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24 (3):035,017. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=94771920&site=ehost-live&scope=site

    Article  Google Scholar 

  20. Katz E, Ofek B, Adler J, Abramowitz HB, Krausz MM (1989) Primary blast injury after a bomb explosion in a civilian bus. Ann Surg 209(4):484. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=2930293&site=ehost-live&scope=site

  21. Khanafer K, Duprey A, Schlicht M, Berguer R (2009) Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (pdms) material as related to its biological applications. Biomed Microdevices 11(2):503

    Article  Google Scholar 

  22. Lim J, Hong J, Chen WW, Weerasooriya T (2011) Mechanical response of pig skin under dynamic tensile loading. International Journal of Impact Engineering 38(2):130. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=55499924&site=ehost-live&scope=site

    Article  Google Scholar 

  23. Mata A, Fleischman AJ, Roy S (2005) Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4):281

    Article  Google Scholar 

  24. Mates SP, Rhorer R, Forster A, Everett RK, Simmonds KE, Bagchi A (2011) Modeling and DIC Measurements of Dynamic Compression Tests of a Soft Tissue Simulant. In: Dyn. Behav. Mater. Vol 1. Springer, New York, pp 307–316. doi:10.1007/978-1-4614-0216-9_43.

  25. Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: A mechanism for brain injury with implications for helmet design. Phys Rev Lett:103. doi:10.1103/PhysRevLett.103.108702. 0809.3468

  26. Mrozek RA, Leighliter B, Gold CS, Beringer IR, Yu JH, VanLandingham MR, Moy P, Foster MH, Lenhart JL (2015) The relationship between mechanical properties and ballistic penetration depth in a viscoelastic gel. J Mech Behav Biomed Mater 44:109

    Article  Google Scholar 

  27. Myers KM, Coudrillier B, Boyce BL, Nguyen TD (2010) The inflation response of the posterior bovine sclera. Acta Biomater 6(11):4327–35. doi:10.1016/j.actbio.2010.06.007. http://www.ncbi.nlm.nih.gov/pubmed/20558331

  28. Nie X, Song B, Ge Y, Chen WW, Weerasooriya T (2008) Dynamic Tensile Testing of Soft Materials. Exp Mech 49(4):451–458. doi:10.1007/s11340-008-9133-5

    Article  Google Scholar 

  29. Nie X, Cheng JI, Chen WW (2011a) Dynamic tensile response of porcine muscle. J Appl Mech 78 (2):021,009–021,001

    Article  Google Scholar 

  30. Nie X, Prabhu R, Chen W, Caruthers J, Weerasooriya T (2011b) A kolsky torsion bar technique for characterization of dynamic shear response of soft materials. Exp Mech 51(9): 1527

    Article  Google Scholar 

  31. Palchesko RN, Zhang L, Sun Y, Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7(12):1

    Article  Google Scholar 

  32. Petras JM, Bauman RA, Elsayed NM (1997) Visual system degeneration induced by blast overpressure. Toxicology 121(1):41. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=9217314&site=ehost-live&scope=site

  33. Placet V, Delobelle P (2015) Mechanical properties of bulk polydimethylsiloxane for microfluidics over a large range of frequencies and aging times. J Micromech Microeng 25(3):035,009. http://stacks.iop.org/0960-1317/25/i=3/a=035009

    Article  Google Scholar 

  34. Polyzois GL, Eleni PN, Krokida MK (2011) Optical properties of pigmented polydimethylsiloxane prosthetic elastomers: effect of ”outdoor” and ”indoor” accelerating aging. Journal of craniofacial surgery 22(5):1574

    Article  Google Scholar 

  35. Ramesh KT (2008) High Rates and Impact Experiments. In: Sharpe WN (ed) Springer Handb. Exp. Solid Mech. Springer, US, pp 929–960, doi:10.1007/978-0-387-30877-7_33.

  36. Rao JS (1999) Dynamics of Plates. Marcel Dekker

  37. Rashid B, Destrade M, Gilchrist MD (2014) Mechanical characterization of brain tissue in tension at dynamic strain rates. J Mech Behav Biomed Mater 33:43

    Article  Google Scholar 

  38. Richler D, Rittel D (2014) On the testing of the dynamic mechanical properties of soft gelatins. Exp Mech 54(5):805. http://search.ebscohost.com/login.aspx?direct=true&db=asf&AN=95905672&site=ehost-live&scope=site

  39. Ritenour AE, Blackbourne LH, Kelly JF, McLaughlin DF, Pearse La, Holcomb JB, Wade CE (2010) Incidence of primary blast injury in US military overseas contingency operations: a retrospective study. Ann Surg 251(6):1140–4. doi:10.1097/SLA.0b013e3181e01270. http://www.ncbi.nlm.nih.gov/pubmed/20485126

    Article  Google Scholar 

  40. Salisbury CP, Cronin DS (2009) Mechanical Properties of Ballistic Gelatin at High Deformation Rates. Exp Mech 49(6):829–840. doi:10.1007/s11340-008-9207-4

    Article  Google Scholar 

  41. Saraf H, Ramesh KT, Lennon AM (2007a) Measurement of the dynamic bulk and shear response of soft human tissues. Exp Mech 47(3):439

    Article  Google Scholar 

  42. Saraf H, Ramesh K T, Lennon A M, Merkle A C, Roberts J C (2007b) Mechanical properties of soft human tissues under dynamic loading. J Biomech 40(9):1960

    Article  Google Scholar 

  43. Sarntinoranont M, Lee SJ, Hong Y, King MA, Subhash G, Kwon J, Moore DF (2012) High-strain-rate brain injury model using submerged acute rat brain tissue slices. J Neurotrauma 29(2):418. http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2012-02952-021&site=ehost-live&scope=site

  44. Schultz DS, Lotz JC, Lee SM, Trinidad ML, Stewart JM (2008) Structural factors that mediate scleral stiffness. Investig Ophthalmol Vis Sci 49(10):4232. http://search.ebscohost.com/login.aspx?direct=true&db=cmedm%25&AN=18539943&site=ehost-live&scope=site

    Article  Google Scholar 

  45. Song B, Chen W, Ge Y, Weerasooriya T (2007) Dynamic and quasi-static compressive response of porcine muscle. J Biomech 40(13):2999–3005. doi:10.1016/j.jbiomech.2007.02.001. http://www.ncbi.nlm.nih.gov/pubmed/17448479

    Article  Google Scholar 

  46. Stapczynski JS (1982) Blast injuries. Ann Emerg Med 11(12):687–694

    Article  Google Scholar 

  47. Subhash G, Kwon J, Mei R, Moore D (2012) Non-newtonian behavior of ballistic gelatin at high shear rates. Exp Mech 52(6):551

    Article  Google Scholar 

  48. Thevamaran R, Daraio C (2014) An Experimental Technique for the Dynamic Characterization of Soft Complex Materials. Exp Mech 54(8):1319–1328. doi:10.1007/s11340-014-9896-9

    Article  Google Scholar 

  49. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill International Ed., Singapore. iD: 860490846

    MATH  Google Scholar 

  50. Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013a) Full-field bulge test for planar anisotropic tissues: part I–experimental methods applied to human skin tissue. Acta Biomater 9(4):5913–25. doi:10.1016/j.actbio.2012.11.035. http://www.ncbi.nlm.nih.gov/pubmed/23261928

    Article  Google Scholar 

  51. Tonge TK, Voo LM, Nguyen TD (2013b) Full-field bulge test for planar anisotropic tissues: part II–a thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches. Acta Biomater 9(4):5926–42. doi:10.1016/j.actbio.2012.11.034. http://www.ncbi.nlm.nih.gov/pubmed/23220451

    Article  Google Scholar 

  52. VIC3D (2010) Vic-3D 2010 Reference Manual. Correlated Solution, www.correlatedsolutions.com

  53. Wang Z, Volinsky AA, Gallant ND (2014) Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J Appl Polym Sci 131(22):n/a–n/a

    Article  Google Scholar 

  54. Warren T, Forrestal M (2010) Comments on the effect of radial inertia in the kolsky bar test for an incompressible material. Exp Mech 50(8):1253. http://search.ebscohost.com/login.aspx?direct=true&db=asf&AN=54325857&site=ehost-live&scope=site

    Article  Google Scholar 

  55. White CS (1968) The scope of blast and shock biology and problem areas in relating physical and biological parameters. Ann N Y Acad Sci 152(1):89–102

    Article  Google Scholar 

  56. Woo SLY, Kobayashi AS, Schlegel WA, Lawrence C (1972) Kobayashi_Woo_1972.pdf. Exp Eye Res 14(1):29–39. http://www.ncbi.nlm.nih.gov/pubmed/5039845

    Article  Google Scholar 

  57. Wu CL, Lin HC, Hsu JS, Yip MC, Fang W (2009) Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites. Thin Solid Films 517(17):4895. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=40308020&site=ehost-live&scope=site

Download references

Acknowledgments

The authors would like to thank Ravi Yatnalkar and Matt Shaeffer for the design, building, and technical support of the shock tube inflation experimental setup. This research is financially supported with contract W91CRB-13-P-0090 from the US Army Aberdeen Test Center and US Army Natick Soldier Research, Development & Engineering Center, and the US Army Medical Research, Vision Research Program under grant number W81XWH- 10-1-0766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bentil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentil, S.A., Ramesh, K.T. & Nguyen, T.D. A Dynamic Inflation Test for Soft Materials. Exp Mech 56, 759–769 (2016). https://doi.org/10.1007/s11340-015-0122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0122-1

Keywords

Navigation