Skip to main content
Log in

Damage Detection in Transparent Materials Using Non-Contact Laser Excitation by Nano-Second Laser Ablation and High-Speed Polarization-imaging Camera

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Although transparent materials with birefringent properties (e.g., solar panels and separator films for secondary cells) are common, damage detection during the manufacturing process is crucial to economically realize high-quality materials. Herein a method using a pulsed-laser and a high-speed polarization-imaging camera is proposed to rapidly detect damage, including scratches and dents, in transparent materials. Specifically, as stress waves, which are generated by a non-contact impulse excitation from laser ablation, propagate through a material, the stress concentrations induced around damage are measured as the two-dimensional birefringent phase differences using a high-speed polarization-imaging camera with a microsecond-order temporal resolution. When stress is dominant, the distribution of the measured birefringent phase difference can be considered the relative distribution of stress. Using acrylic plates as a representative transparent material with several hundred micrometers of damage (e.g., a dent or a scratch), we demonstrate that the proposed method detects damage in a very short timeframe of several microseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Morikawa SRK, Gama AL, Braga AMB, Correia RR (2005) Monitoring surface breaking defects with piezoelectric active systems. Exp Mech 45:89–95. doi:10.1177/0014485105051303

    Article  Google Scholar 

  2. Park S, Ahmad S, Yun CB, Roh Y (2006) Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 46:609–618. doi:10.1007/s11340-006-8734-0

    Article  Google Scholar 

  3. Gama AL, Morikawa SRK (2008) Monitoring fatigue crack growth in compact tension specimens using piezoelectric sensors. Exp Mech 48:247–252. doi:10.1007/s11340-007-9086-0

    Article  Google Scholar 

  4. Liu P, Groves RM, Benedictus R (2014) 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT Int 64:52–58. doi:10.1016/j.ndteint.2014.03.003

    Article  Google Scholar 

  5. Garescì F, Catalano L, Petrone F (2006) Experimental results of a damage detection methodology using variations in modal parameters. Exp Mech 46:441–451. doi:10.1007/s11340-006-8151-4

    Article  Google Scholar 

  6. Pandurangan P, Buckner GD (2006) Vibration analysis for damage detection in metal-to-metal adhesive joints. Exp Mech 46:601–607. doi:10.1007/s11340-006-8736-y

    Article  Google Scholar 

  7. Montalvão D, Ribeiro AMR, Duarte-Silva JAB (2011) Experimental assessment of a modal-based multi-parameter method for locating damage in composite laminates. Exp Mech 51:1473–1488. doi:10.1007/s11340-011-9472-5

    Article  Google Scholar 

  8. Arora V, Wijnant YH, de Boer A (2014) Acoustic-based damage detection method. Appl Acoust 80:23–27. doi:10.1016/j.apacoust.2014.01.003

    Article  Google Scholar 

  9. Huda F, Kajiwara I, Hosoya N (2014) Damage detection in membrane structures using non-contact laser excitation and wavelet transformation. J Sound Vib 333:3609–3624. doi:10.1016/j.jsv.2014.04.008

    Article  Google Scholar 

  10. Su Z, Lin Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295:753–780. doi:10.1016/j.jsv.2006.01.020

    Article  Google Scholar 

  11. Cernadas D, Trillo C, Doval ÁF, Lόpez Ó, Lόpez C, Dorrío BV, Fernández JL, Pérez-Amor M (2006) Non-destructive testing of plates based on the visualisation of Lamb waves by double-pulsed TV holography. Mech Syst Signal Process 20:1338–1349. doi:10.1016/j.ymssp.2005.11.014

    Article  Google Scholar 

  12. Kudela P, Ostachowicz W, Żak A (2008) Damage detection in composite plates with embedded PZT transducers. Mech Syst Signal Process 22:1327–1335. doi:10.1016/j.ymssp.2007.07.008

    Article  Google Scholar 

  13. Lammering R (2010) Observation of piezoelectrically induced lamb wave propagation in thin plates by use of speckle interferometry. Exp Mech 50:377–387. doi:10.1007/s11340-009-9233-x

    Article  Google Scholar 

  14. Lee JR, Yoon CY (2010) Development of an optical system for simultaneous ultrasonic wave propagation imaging at multi-points. Exp Mech 50:1041–1049. doi:10.1007/s11340-009-9293-y

    Article  Google Scholar 

  15. Kim MK, Kim EJ, An YK, Park HW, Sohn H (2011) Reference-free impedance-based crack detection in plates. J Sound Vib 330:5949–5962. doi:10.1016/j.jsv.2011.07.025

    Article  Google Scholar 

  16. Pohl J, Willberg C, Gabbert U, Mook G (2012) Experimental and theoretical analysis of Lamb wave generation by piezoceramic actuators for structural health monitoring. Exp Mech 52:429–438. doi:10.1007/s11340-011-9503-2

    Article  Google Scholar 

  17. Liu XL, Jiang ZW, Ji L (2013) Investigation on the design of piezoelectric actuator/sensor for damage detection in beam with lamb waves. Exp Mech 53:485–492. doi:10.1007/s11340-012-9646-9

    Article  Google Scholar 

  18. Valle C, Littles JW Jr (2002) Flaw localization using the reassigned spectrogram on laser-generated and detected Lamb modes. Ultrasonics 39:535–542. doi:10.1016/S0041-624X(02)00249-4

  19. Silva MZ, Gouyon R, Lepoutre F (2003) Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics 41:301–305. doi:10.1016/S0041-624X(02)00455-9

    Article  Google Scholar 

  20. Clorennec D, Prada C, Royer D, Murray TW (2006) Laser impulse generation and interferometer detection of zero group velocity Lamb mode resonance. Appl Phys Lett 89:024101. doi:10.1063/1.2220010

    Article  Google Scholar 

  21. Prada C, Clorennec D, Murray TW, Royer D (2009) Influence of the anisotropy on zero-group velocity Lamb modes. J Acoust Soc Am 126:620–625. doi:10.1121/1.3167277

  22. Lee JR, Shin HJ, Chia CC, Dhital D, Yoon DJ, Huh YH (2011) Long distance laser ultrasonic propagation imaging system for damage visualization. Opt Laser Eng 49:1361–1371. doi:10.1016/j.optlaseng.2011.07.011

    Article  Google Scholar 

  23. Dhital D, Lee JR (2012) A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp Mech 52:1111–1122. doi:10.1007/s11340-011-9567-z

    Article  Google Scholar 

  24. Cès M, Royer D, Prada C (2012) Characterization of mechanical properties of a hollow cylinder with zero group velocity Lamb modes. J Acoust Soc Am 132:180–185. doi:10.1121/1.4726033

  25. Balvantín A, Baltazar A, Rodriguez P (2014) Characterization of laser generated Lamb wave modes after interaction with a thickness reduction discontinuity using ray tracing theory. Exp Mech 54:743–752. doi:10.1007/s11340-013-9846-y

    Article  Google Scholar 

  26. The Institute of Electrical Engineers of Japan (1999) Laser ablation and applications. Corona Publishing Co., LTD, Tokyo

    Google Scholar 

  27. Yabe T, Phipps C, Yamaguchi M, Nakagawa R, Aoki K, Mine H, Ogata Y, Baasandash C, Nakagawa M, Fujiwara E, Yoshida K, Nishiguchi A, Kajiwara I (2002) Microairplane propelled by laser driven exotic target. Appl Phys Lett 80:4318. doi:10.1063/1.1485313

    Article  Google Scholar 

  28. Ko SH, Ryu SG, Misra N, Pan H, Grigoropoulos CP, Kladias N, Panides E, Domoto GA (2007) Laser induced short plane acoustic wave focusing in water. Appl Phys Lett 91:051128. doi:10.1063/1.2768192

    Article  Google Scholar 

  29. Hu H, Wang X, Zhai H, Zhang N, Wang P (2010) Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl Phys Lett 97:061117. doi:10.1063/1.3479919

    Article  Google Scholar 

  30. Alfano M, Lubineau G, Furgiuele F, Paulino GH (2011) On the enhancement of bond toughness for Al/epoxy T-peel joints with laser surface treated surfaces. Int J Fract 171:139–150. doi:10.1007/s10704-011-9636-4

    Article  Google Scholar 

  31. Alfano M, Lubineau G, Furgiuele F, Paulino GH (2012) Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy bonded joints. Int J Adhes Adhes 39:33–41. doi:10.1016/j.ijadhadh.2012.03.002

    Article  Google Scholar 

  32. Hosoya N, Kajiwara I, Inoue T, Umenai K (2014) Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude. J Sound Vib 333:4254–4264. doi:10.1016/j.jsv.2014.04.050

    Article  Google Scholar 

  33. Kajiwara I, Hosoya N (2011) Vibration testing based on impulse response excited by laser ablation. J Sound Vib 330:5045–5057. doi:10.1016/j.jsv.2010.09.036

    Article  Google Scholar 

  34. Hosoya N, Kajiwara I, Hosokawa T (2012) Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input. J Sound Vib 331:1355–1365. doi:10.1016/j.jsv.2011.10.034

    Article  Google Scholar 

  35. Huda F, Kajiwara I, Hosoya N, Kawamura S (2013) Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests. Mech Syst Signal Process 40:589–604. doi:10.1016/j.ymssp.2013.05.023

    Article  Google Scholar 

  36. Hosoya N, Kajiwara I, Umenai K (2015) Dynamic characterizations of underwater structures using non-contact vibration test based on nanosecond laser ablation in water: investigation of cavitation bubbles by visualizing shockwaves using the Schlieren method. J Vib Control. doi:10.1177/1077546314564693

    Google Scholar 

  37. Onuma T, Otani Y (2012) A dynamic measurement system for two-dimensional birefringence distribution with sub-millisecond time resolution. J Jpn Soc Precis Eng 78:1082–1086

    Article  Google Scholar 

  38. Onuma T, Otani Y (2014) A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz. Opt Commun 315:69–73. doi:10.1016/j.optcom.2013.10.086

    Article  Google Scholar 

  39. Torrisi L, Borrielli A, Margarone D (2007) Study on the ablation threshold induced by pulse lasers at different wavelengths. Nucl Instrum Meth B 255:373–379. doi:10.1016/j.nimb.2006.12.144

    Article  Google Scholar 

  40. Hartmann B, Jarzynski J (1974) Immersion apparatus for ultrasonic measurements in polymers. J Acoust Soc Am 56:1469–1477. doi:10.1121/1.1903466

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Challenging Exploratory Research (26630080) and (26630102) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hosoya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, N., Umino, R., Kajiwara, I. et al. Damage Detection in Transparent Materials Using Non-Contact Laser Excitation by Nano-Second Laser Ablation and High-Speed Polarization-imaging Camera. Exp Mech 56, 339–343 (2016). https://doi.org/10.1007/s11340-015-0089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0089-y

Keywords

Navigation