Skip to main content
Log in

Experimental and Theoretical Analysis of Lamb Wave Generation by Piezoceramic Actuators for Structural Health Monitoring

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Piezoceramic transducers, acting as actuators and sensors, are attractive for generation and reception of Lamb waves in Structural Health Monitoring (SHM) systems. To get insight into the source-mechanisms of Lamb waves, the vibrations of piezoceramic actuators are analyzed for the free and bonded state of the piezoceramic by analytical and finite element (FEM) calculations. Mode shapes and spectra of piezoceramic actuators and Lamb wave fields are experimentally recorded by scanning laser vibrometry. The analytical solutions for bending modes are shown to be valid for large diameter-to-thickness-relations of a free piezoactuator (D/H > 10) only. For thicker piezoceramics, a FEM-solution gives better results. Calculated frequencies for radial modes of vibration are confirmed by 3-D-laser-vibrometry and measurements of electrical impedance. The bonded case of a piezoactuator exhibits a broad resonance peak resulting from the strong coupling between radial and bending modes. The assumption that optimal excitation of Lamb modes occurs for a matching of the wavelengths to the diameter of the piezoceramic holds only for thin ceramics. Otherwise the distinct modes of out-of-plane and in-plane vibrations control the excitation of the Lamb modes more than the wavelength matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Boller C, Chang F-K, Fujino Y (2009) Encyclopedia of structural health monitoring. Wiley & Sons, Chichester

    Book  Google Scholar 

  2. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Elsevier Academic Press, New York. ISBN 9780120887606

    Google Scholar 

  3. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance based health monitoring and path forward. Shock Vib Dig 35(6):451–463

    Article  Google Scholar 

  4. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295:753–780

    Article  Google Scholar 

  5. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Dig 39:91–114

    Article  Google Scholar 

  6. Boller C, Staszewski W, Tomlinson G (2004) Health monitoring of aerospace structures. Wiley. ISBN 0-470-84340-3

  7. Viktorov IA (1967) Rayleigh and Lamb waves. Plenum Press, New York

    Google Scholar 

  8. Ha S, Chang F-K (2010) Adhesive interface layer effects in PZT-induced Lamb wave propagation. Smart Mater Struct 19:025006

    Article  Google Scholar 

  9. Huang H, Pamphile T, Derriso M (2008) The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch. Smart Mater Struct 17:1–13

    Google Scholar 

  10. Huang C-H, Lin Y-C, Ma C-C (2004) Theoretical analysis and experimental measurement for resonant vibration of piecoceramic circular plates. IEEE Trans Ultrason Ferroelectrics Freq Contr 51(1):12–24

    Article  Google Scholar 

  11. Itao K, Crandall SH (1979) Natural modes and natural frequencies of uniform, circular, free-free plates. J Appl Mech 46:448–453

    Article  MATH  Google Scholar 

  12. Soedel W (2004) Vibrations of shells and plates. Marcel Dekker Inc. ISBN: 0-8247-5629-0

  13. Staszewski WJ, Lee BK, Mallet L, Scarpa F (2004) Structural health monitoring using scanning laser vibrometry: I. Lamb wave sensing. Smart Mater Struct 13:251–260

    Article  Google Scholar 

  14. Köhler B (2006) Dispersion relations in plate structures studied with a scanning laser vibrometer 9th European NDT Conference ECNDT Berlin paper Mo.2.1.4

  15. Lammering R, Neumann M (2010) Optical measurement techniques for use of defect detection in thin walled structures Fifth European Workshop on Structural Health Monitoring, DEStech Publications, Inc., pp 517522

  16. Malinowski P, Wandowski T, Kudela P, Ostachowicz W (2010) Laser vibrometry for guided wave propagation phenomena visualisation and damage detection AIP Conf. Proc. 2010 Vol. 1253, 9th International Conference on Vibration Measurements by Laser and Non-Contact Techniques Ancona, pp. 140–149

  17. Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11:246–257

    Google Scholar 

  18. Wolf FP (1979) Präzisionsmessungen des Elastizitätsmoduls von Polymeren mit Longitudinalschwingungen. Coll Pol Sci 257(12):1253–1275

    Article  Google Scholar 

  19. Kessler S, Spearing M, Atallab M (2002) In-situ damage detection of composites structures using Lamb wave methods. Proc. First European Workshop on Structural Health Monitoring 10–12 July 2002 Paris France, pp 374–381

  20. Pohl J, Szewieczek A, Hillger W, Mook G, Schmidt D (2010) Determination of Lamb wave dispersion data for SHM. Fifth European Workshop on Structural Health Monitoring, DEStech Publications, Inc., pp 931936

  21. Xinlin P, Qinga X, Chana H-L, Bearda S, Ooib T, Marotta S (2006) Effect of adhesive on the performance of piezoelectric elements used to monitor structural health. International Journal of Adhesion and Adhesives 26:622–28

    Article  Google Scholar 

  22. Rabinovitch O, Vinson JR (2002) Adhesive layer effects in surface mounted piezoelectric actuators. J Int Mater Syst Struct 13:689–704

    Article  Google Scholar 

  23. Willberg C, Dudzek S, Pohl J, Mook G, Gabbert U. Adhesive layer influence of piezoelectric induced Lamb waves. Proc. ECCM 2010 Paris France

  24. Sohn H, Lee SJ (2010) Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers. Smart Mater Struct 19:015007

    Article  Google Scholar 

  25. Ende SV, Lammering R (2009) Modeling and simulation of Lamb wave generation with piezoelectric plates. Mech Adv Mater Struct 16(3):188–197

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank the German Research Foundation (DFG) and all partners for their support (GA 480/13-1, MO 553/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, J., Willberg, C., Gabbert, U. et al. Experimental and Theoretical Analysis of Lamb Wave Generation by Piezoceramic Actuators for Structural Health Monitoring. Exp Mech 52, 429–438 (2012). https://doi.org/10.1007/s11340-011-9503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9503-2

Keywords

Navigation