Skip to main content
Log in

A Technique for Coupled Thermomechanical Response Measurement Using Infrared Thermography and Digital Image Correlation (TDIC)

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

An integrated infrared thermography and 3-D digital image correlation (TDIC) technique has been developed which allows for simultaneous measurement of spatial and temporal distributions of temperatures and displacements. For this, a novel technique was developed to calibrate the IR thermal cameras with a stereo-vision digital image correlation (DIC) system using the standard pin-hole stereo calibration model. This method fuses thermal and displacement information and compensates for the difference in camera resolutions. Several high temperature black and white paints were evaluated to determine their characteristics including the temperature-dependent emissivity of each paint, the mixed emissivity of both paints in the speckle pattern, and optical thickness. The advantages of evaluating linked full-field temperatures and strain measurements through the TDIC technique are demonstrated through measurements obtained on an E-glass/vinyl ester/balsa wood sandwich composite subjected to simultaneous one-sided heating and compressive loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Asaro R, Lattimer B, Ramroth W (2009) Structural response of FRP composites during fire. Compos Struct 87:382–393. doi:10.1016/j.compstruct.2008.02.018

    Article  Google Scholar 

  2. Fogle EJ, Lattimer BY, Feih S et al (2012) Compression load failure of aluminum plates due to fire. Eng Struct 34:155–162. doi:10.1016/j.engstruct.2011.09.014

    Article  Google Scholar 

  3. Summers PT, Lattimer BY, Case S (2011) Compressive failure of composite plates during one-sided heating. Compos Struct 93:2817–2825. doi:10.1016/j.compstruct.2011.05.023

    Article  Google Scholar 

  4. Post D, Wood JD (1989) Determination of thermal strains by moiré interferometry. Exp Mech 29:318–322

    Article  Google Scholar 

  5. Løkberg OJ, Malmo JT, Slettemoen GÅ (1985) Interferometric measurements of high temperature objects by electronic speckle pattern interferometry. Appl Opt 24:3167–3172

    Article  Google Scholar 

  6. Sharpe WN (2009) A high-frequency high-temperature optical strain/displacement gage. Exp Mech 50:227–237. doi:10.1007/s11340-009-9278-x

    Article  Google Scholar 

  7. Völkl R, Fischer B (2004) Mechanical testing of ultra-high temperature alloys. Exp Mech 44:121–127. doi:10.1177/0014485104042451

    Article  Google Scholar 

  8. Anwander M, Zagar BG, Weiss B, Weiss H (2000) Noncontacting strain measurements at high temperatures by the digital laser speckle technique. Exp Mech 40:98–105. doi:10.1007/BF02327556

    Article  Google Scholar 

  9. Pan B, Wu D, Wang Z, Xia Y (2011) High-temperature digital image correlation method for full-field deformation measurement at 1200 °C. Meas Sci Technol 22:015701. doi:10.1088/0957-0233/22/1/015701

    Article  Google Scholar 

  10. Pan B, Wu D, Gao J (2013) High-temperature strain measurement using active imaging digital image correlation and infrared radiation heating. J Strain Anal Eng Des 49:224–232. doi:10.1177/0309324713502201

    Article  Google Scholar 

  11. Lyons JS, Liu J (1996) High-temperature deformation measurements using digital-image correlation. Exp Mech 36:64–70. doi:10.1007/BF02328699

    Article  Google Scholar 

  12. Lu Z, Zarrabi K, Humphries S et al (2003) Non-contacting creep strain determination at 550°C. Int J Press Vessel Pip 80:361–365. doi:10.1016/S0308-0161(03)00073-5

    Article  Google Scholar 

  13. Grant BMB, Stone HJ, Withers PJ, Preuss M (2009) High-temperature strain field measurement using digital image correlation. J Strain Anal Eng Des 44:263–271. doi:10.1243/03093247JSA478

    Article  Google Scholar 

  14. Novak MD, Zok FW (2011) High-temperature materials testing with full-field strain measurement: experimental design and practice. Rev Sci Instrum 82:115101. doi:10.1063/1.3657835

    Article  Google Scholar 

  15. Summers PT, Case SW, Lattimer BY (2014) Residual mechanical properties of aluminum alloys AA5083-H116 and AA6061-T651 after fire. Eng Struct 76:49–61

    Article  Google Scholar 

  16. Cholewa NM, Summers PT, Lattimer BY, Case SW (2014) Elevated temperature sandwich composite delamination measurement using coupled DIC-thermography. Proc. SEM Annu. Conf.

  17. Chrysochoos A, Huon V, Jourdan F et al (2010) Use of full-field digital image correlation and infrared thermography measurements for the thermomechanical analysis of material behaviour. Strain 46:117–130. doi:10.1111/j.1475-1305.2009.00635.x

    Article  Google Scholar 

  18. Chrysochoos A, Berthel B, Latourte F et al (2008) Local energy analysis of high-cycle fatigue using digital image correlation and infrared thermography. J Strain Anal Eng Des 43:411–422. doi:10.1243/03093247JSA374

    Article  Google Scholar 

  19. Favier D, Louche H, Schlosser P et al (2007) Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti–50.8at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater 55:5310–5322. doi:10.1016/j.actamat.2007.05.027

    Article  Google Scholar 

  20. Bodelot L, Charkaluk E, Sabatier L, Dufrénoy P (2011) Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by Digital Image Correlation and Infrared Thermography. Mech Mater 43:654–670. doi:10.1016/j.mechmat.2011.08.006

    Article  Google Scholar 

  21. Bodelot L, Sabatier L, Charkaluk E, Dufrénoy P (2009) Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel. Mater Sci Eng A 501:52–60. doi:10.1016/j.msea.2008.09.053

    Article  Google Scholar 

  22. Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2011) One-shot measurement of thermal and kinematic fields: infrared image correlation (IRIC). Exp Mech 52:241–255. doi:10.1007/s11340-011-9483-2

    Article  Google Scholar 

  23. Orteu J-J, Rotrou Y, Sentenac T, Robert L (2007) An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: principle and preliminary results. Exp Mech 48:163–179. doi:10.1007/s11340-007-9071-7

    Article  Google Scholar 

  24. Pitarresi G, Patterson EA (2003) A review of the general theory of thermoelastic stress analysis. J Strain Anal Eng Des 38:405–417. doi:10.1243/03093240360713469

    Article  Google Scholar 

  25. Dulieu-Smith JM (1995) Alternative calibration techniques for quantitative thermoelastic stress analysis. Strain 31:9–16

    Article  Google Scholar 

  26. Louche H, Schlosser P, Favier D, Orgéas L (2012) Heat source processing for localized deformation with non-constant thermal conductivity. application to superelastic tensile tests of NiTi shape memory alloys. Exp Mech 52:1313–1328. doi:10.1007/s11340-012-9607-3

    Article  Google Scholar 

  27. Goidescu C, Welemane H, Garnier C et al (2013) Damage investigation in CFRP composites using full-field measurement techniques: Combination of digital image stereo-correlation, infrared thermography and X-ray tomography. Compos Part B Eng 48:95–105. doi:10.1016/j.compositesb.2012.11.016

    Article  Google Scholar 

  28. Sutton MA, Yan J, Deng X et al (2007) Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading. Opt Eng 46:051003. doi:10.1117/1.2741279

    Article  Google Scholar 

  29. Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor & Francis, New York

    Google Scholar 

  30. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York, NY, USA

  31. Gu P, Asaro R (2008) Distortion of polymer matrix composite panels under transverse thermal gradients. Compos Struct 82:413–421. doi:10.1016/j.compstruct.2007.01.020

    Article  Google Scholar 

  32. Anjang A, Chevali VS, Kandare E et al (2014) Tension modelling and testing of sandwich composites in fire. Compos Struct 113:437–445. doi:10.1016/j.compstruct.2014.03.016

    Article  Google Scholar 

  33. Goodrich TW, Lattimer BY (2012) Fire decomposition effects on sandwich composite materials. Compos Part A Appl Sci Manuf 43:803–813. doi:10.1016/j.compositesa.2011.03.007

    Article  Google Scholar 

  34. Feih S, Mathys Z, Gibson AG, Mouritz AP (2008) Modeling compressive skin failure of sandwich composites in fire. J Sandw Struct Mater 10:217–245. doi:10.1177/1099636207082307

    Article  Google Scholar 

  35. Lua J (2009) Hybrid progressive damage prediction model for loaded marine sandwich composite structures subjected to a fire. Fire Technol. doi:10.1007/s10694-009-0124-6

    Google Scholar 

  36. Boyd SE, Case SW, Lesko JL (2007) Compression creep rupture behavior of a glass/vinyl ester composite subject to isothermal and one-sided heat flux conditions. Compos Part A Appl Sci Manuf 38:1462–1472. doi:10.1016/j.compositesa.2007.01.006

    Article  Google Scholar 

  37. Boyd S, Lesko J, Case S (2007) Compression creep rupture behavior of a glass/vinyl ester composite laminate subject to fire loading conditions. Compos Sci Technol 67:3187–3195. doi:10.1016/j.compscitech.2007.04.009

    Article  Google Scholar 

  38. Brown SL, Lattimer BY (2013) Transient gas-to-particle heat transfer measurements in a spouted bed. Exp Therm Fluid Sci 44:883–892. doi:10.1016/j.expthermflusci.2012.10.004

    Article  Google Scholar 

  39. Reu PL (2013) Uncertainty quantification for 3D digital image correlation. In: Jin H (ed) Imaging methods Nov. Mater. Challenging Appl. pp 311–317

  40. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45:160–178. doi:10.1111/j.1475-1305.2008.00592.x

    Article  Google Scholar 

  41. Reu PL (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51:443–452. doi:10.1007/s11340-010-9417-4

    Article  Google Scholar 

  42. Schreirer HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39:2915–2921

    Article  Google Scholar 

  43. Summers PT, Lattimer BY, Case S, Feih S (2012) Predicting compression failure of composite laminates in fire. Compos Part A Appl Sci Manuf 43:773–782. doi:10.1016/j.compositesa.2012.02.003

    Article  Google Scholar 

  44. Goodrich TW (2009) Thermophysical properties and microstructural changes of composite materials at elevated temperature. Virginia Polytechnic Institute & State University, Blacksburg, VA, USA

    Google Scholar 

  45. Goodrich T, Nawaz N, Feih S et al (2010) High-temperature mechanical properties and thermal recovery of balsa wood. J Wood Sci 56:437–443. doi:10.1007/s10086-010-1125-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the sponsorship related to this work from N00014-13-1-0894 DURIP for the IR camera and DIC equipment, contract monitor Dr. Stephen E. Turner; ONR Grant N00014-12-1-0248 for the sandwich composite measurements, contract monitor Dr. Stephen E. Turner; and the Naval Engineering Education Center under Contract N65540-10-C-0003, Subcontract No. 3002542411-LAT. The authors would also like to thank Correlated Solutions, Inc., notably Micah Simonsen, for discussion and assistance in integrating this system. The authors also thank Mrs. Aslina Anjang and Mr. Robert Ryan at RMIT University for preparing the composite sandwich samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Summers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholewa, N., Summers, P.T., Feih, S. et al. A Technique for Coupled Thermomechanical Response Measurement Using Infrared Thermography and Digital Image Correlation (TDIC). Exp Mech 56, 145–164 (2016). https://doi.org/10.1007/s11340-015-0086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0086-1

Keywords

Navigation