Skip to main content
Log in

Stress Network Analysis of 2D Non-Cohesive Polydisperse Granular Materials using Infrared Thermography

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The objective of the study is to analyze the hydrostatic stress network in two-dimensional cohesionless polydisperse granular materials under confined compression. Infrared (IR) thermography and thermoelastic stress analysis were used for this purpose. As model materials, the granular media under study were composed of cylinders made in POM polymer. Three cylinder diameters were used to prepare different samples differing in terms of the ratio between the numbers of cylinders of each diameter. These samples comprised between 200 and 324 cylinders. The temperature variations due to thermoelastic coupling under loading were measured on a cross-section of the cylinder network using an IR camera. The processing enabled us to identify the hydrostatic stress network in the samples. Molecular dynamics (MD) simulations were then performed to obtain a numerical network of hydrostatic stresses for each sample. The fields obtained from IR experiments and MD simulations are rarely in agreement, except in some zones of the sample. This was expected as it is not possible to have exactly the same geometrical configurations with both approaches. However, a good agreement is obtained in terms of statistical distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldenberg C, Goldhirsch I (2004) Small and large scale granular statics. Granular Matter 6(2-3):87–96

    Article  MATH  Google Scholar 

  2. Sielamowicz I, Blonski S, Kowalewski TA (2006) Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, Part 2 of 3-converging hoppers. Chem Eng Sci 61(16):5307–5317

    Article  Google Scholar 

  3. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir R, Viggiani, G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Geotechnique 60 (5): 315–322

    Article  Google Scholar 

  4. Mueth DM, Jaeger HM, Nagel SR (1998) Force distribution in a granular medium. Phys Rev E 57(3):3164–3169

    Article  Google Scholar 

  5. Dantu P (1957) Contribution à l’étude mécanique et géométrique des milieux pulvérulents. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, tome, vol 1. Butterworth, London, pp 144–148

  6. Drescher A, De Josselin de Jong G (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20(5):337–340

    Article  Google Scholar 

  7. Oda M, Konishi J, Nemat-Nasser S (1982) Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech Mater 1(4):269–283

    Article  Google Scholar 

  8. Durelli AJ, Wu D (1983) Use of coefficients of influence to solve some inverse problems in plane elasticity. J Appl Mech Trans ASME 50(2):288–296

    Article  MATH  Google Scholar 

  9. Shukla A, Nigam H (1985) A numerical experimental-analysis of the contact stress problem. J Strain Anal Eng Des 20(4):241–245

    Article  Google Scholar 

  10. Majmudar TS, Behringer RP (2005) Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045):1079–1082

    Article  Google Scholar 

  11. Bigoni D, Noselli G (2010) Localized stress percolation through dry masonry walls. Part I - Experiments. Eur J Mech A - Solids 29(3):291–298

    Article  Google Scholar 

  12. Zhang J, Majmudar TS, Tordesillas A, Behringer RP (2010) Statistical properties of a 2D granular material subjected to cyclic shear. Granular Matter 12(2):159–172

    Article  Google Scholar 

  13. Wood DM, Lesniewska D (2011) Stresses in granular materials. Granular Matter 13(4):395–415

    Article  Google Scholar 

  14. Guo P (2012) Critical length of force chains and shear band thickness in dense granular materials. Acta Geotechnica 7(1):41–55

    Article  Google Scholar 

  15. Estep J, Dufek J (2012) Substrate effects from force chain dynamics in dense granular flows. J Geophys Res - Earth Surf 117:F01028

    Article  Google Scholar 

  16. Clark AH, Petersen AJ, Behringer RP (2014) Collisional model for granular impact dynamics. Phys Rev E 89(1):012201

    Article  Google Scholar 

  17. Dulieu-Barton JM Stanley P (1998) Development and application of thermoelastic stress analysis. J Strain Anal Eng Des 33(2):93–104

    Article  Google Scholar 

  18. Pitarresi G, Patterson EA (2003) A review of the general theory of thermoelastic stress analysis. J Strain Anal Eng Des 38(5):405–417

    Article  Google Scholar 

  19. Greene RJ, Patterson EA, Rowlands RE (2008) 26. In: Sharpe WN (ed) Springer Handbook of Experimental Solid Mechanics. Springer, New York, pp 743–768

    Chapter  Google Scholar 

  20. Emery TR, Dulieu-Barton JM, Earl JS, Cunningham PR (2008) A generalised approach to the calibration of orthotropic materials for thermoelastic stress analysis. Compos Sci Technol 68(3–4):743–752

    Article  Google Scholar 

  21. Barone S, Patterson EA (1998) Polymer coating as a strain witness in thermolelasticity. J Strain Anal Eng Des 33(3):223–232

    Article  Google Scholar 

  22. Balandraud X, Zhou G, Grédiac M, Tessier-Doyen N (2010) Experimental evidence of thermal effects in multiphase ceramic specimens subjected to cyclic loading. Exp Mech 50(7):979–992

    Article  Google Scholar 

  23. Delpueyo D, Balandraud X, Grédiac M (2011) Applying infrared thermography to analyse martensitic microstructures in a Cu-Al-Be shape-memory alloy subjected to a cyclic loading. Mater Sci Eng A 528(28):8249–8258

    Article  Google Scholar 

  24. Boyd SW, Dulieu-Barton JM, Rumsey L (2006) Stress analysis of finger joints in pultruted GRP materials. Int J Adhes Adhes 26(7):498–510

    Article  Google Scholar 

  25. Moutrille MP, Balandraud X, Grédiac M, Derrien K, Baptiste D (2008) Applying thermoelasticity to study stress relief and crack propagation in aluminium specimens patched with composite material. J Strain Anal Eng Des 43(6):423–434

  26. Sepulveda F, Fudym O (2011) Infrared tracking from morphological image processing tools - Application to heat transfer characterization in granular media. Heat Transf Eng 32(9):787–799. article number PII 931188544

    Article  Google Scholar 

  27. Luong MP (1986) Characteristic threshold and infrared vibrothermography of sand. Geotech Testing J 9(2):80–86

    Article  Google Scholar 

  28. Luong MP (2001) Infrared thermography of the dissipative behaviour of sand. In: Proceedings of the 15th International Conference on Soil Mechanics and Foundation Engineering, vol 1–3. A A Balkema Publishers, Netherlands, pp 199–202

  29. Luong MP (2007) Introducing infrared thermography in soil dynamics. Infrared Phys and Technol 49(3):306–311

    Article  Google Scholar 

  30. Jongchansitto P, Balandraud X, Grédiac M, Beitone C, Preechawuttipong I (2014) Using infrared thermography to study hydrostatic stress networks in granular materials. Soft Matter 10(43):8603–8607

  31. Rao N, O’Brien K (1998) Design data for plastics Engineers. Carl Hansen Verlag, München

    Book  Google Scholar 

  32. Dulieu-Barton JM, Emery TR, Quinn S, Cunningham PR (2006) A temperature correction methodology for quantitative thermoelastic stress analysis and damage assessment. Meas Sci Technol 17(6):1627–1637

    Article  Google Scholar 

  33. Schneebeli G (1956) Une analogie mécanique pour les terres sans cohésion. C R Acad Sci 243:125–126

    Google Scholar 

  34. Offermann S, Beaudoin JL, Bissieux C, Frick H (1997) Thermoelastic stress analysis under nonadiabatic conditions. Exp Mech 37(4):409–413

    Article  Google Scholar 

  35. Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274–277

    Article  Google Scholar 

  36. Radjai F, Wolf D, Jean M, Moreau JJ (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64

    Article  Google Scholar 

  37. Radjai F, Preechawuttipong I, Peyroux R, et al. (2001) Cohesive granular texture. In: Vermeer PA (ed) Continuous and discontinuous modelling of cohesive-frictional materials. Springer-Verlag, Berlin, pp 149–162

    Chapter  Google Scholar 

  38. Preechawuttipong I (2002) Modélisation du comportement mécanique des milieux granulaires cohésifs. Dissertation, University of Montpellier II, France. In French

  39. Preechawuttipong I, Peyroux R, Radjai F, Rangsri W (2007) Static states of cohesive granular media. J Mech Sci Technol 21(12):1957–1963

    Article  Google Scholar 

  40. Allen M, Tilesley D (1987) Computer Simulation of Liquid. Oxford Science Publications

Download references

Acknowledgements

The authors gratefully acknowledge the Rajamangala University of Technology Isan (RMUTI, Thailand) for its support during this research. Nicolas Blanchard, Arthur Mota and the Center of Technological Transfer of the IFMA institute are also gratefully acknowledged for participating in the device manufacturing and the set-up preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Balandraud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiamarit, C., Balandraud, X., Preechawuttipong, I. et al. Stress Network Analysis of 2D Non-Cohesive Polydisperse Granular Materials using Infrared Thermography. Exp Mech 55, 761–769 (2015). https://doi.org/10.1007/s11340-014-9975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9975-y

Keywords

Navigation