Skip to main content
Log in

Determination of Local Thermophysical Properties and Heat of Transition from Thermal Fields Measurement During Drop Calorimetric Experiment

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a non-contact original method to estimate local thermophysical properties (heat capacity and thermal conductivity) and heats of transition from plane thin specimens. This method is based on measurement of temperature fields with an infrared camera during a drop calorimetric experiment. A studied specimen and a reference specimen, with similar geometries, are simultaneously tested. Firstly, the method is validated by estimating heat capacity and thermal conductivity of Vanadium specimens and by comparing the determined values with those obtained by Differential Scanning Calorimetry and by a laser flash method, respectively. Secondly, the method is used to determine latent heats of martensitic transformations. These heats of transition are determined during homogeneous and heterogeneous drop calorimetric experiments of NiTi shape memory alloys specimens. Measured transformation temperatures and latent heats are in good accordance with results obtained by Differential Scanning Calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Illekova E, Aba B, Kuhnast FA (1992) Measurement of accurate specifc heats of metallic glasses by differential scanning calorimetry (DSC). Part 1: Analysis of theroretical principles and accuracies of suggested measurement procedures. Thermochimica Acta 195:195–209

    Article  Google Scholar 

  2. Reading M, Elliott D, Hill VL (1993) A new approach to the calorimetric investigation of physical and chemical transitions. J Therm Anal 40:949–955

    Article  Google Scholar 

  3. Reading M, Luget A, Wilson R (1994) Modulated differential scanning calorimetry. Thermochimica Acta 238:295–307

    Article  Google Scholar 

  4. Hatta I (1996) AC calorimetric aspect of dynamic differential scanning calorimetry. Thermochimica Acta 272:49–52

    Article  Google Scholar 

  5. Davis W R, Maglic KD, Cezairliyan A, Peketsky VE (1984) Hot-wire method for the measurement of the thermal conductivity of refractory materials. Compendium of thermophysical property measurement methods

  6. Parker W, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  7. Wang H, Sen M (2009) Analysis of the 3-omega method for the thermal conductivity measurement. Int J Heat Mass Transfer 52:2102–2109

    Article  MATH  Google Scholar 

  8. Schick C (2012) Calorimetry. Polym Sci 2:793–823

    Google Scholar 

  9. Delobelle V, Delobelle P, Liu Y, Favier D, Louche H (2013) Resistance welding of NiTi shape memory alloy tubes. J Mater Process Technol 213:1139–1145

    Article  Google Scholar 

  10. Meng Q, Liu Y, Yang H, Shariat BS, Nam T H (2012) Functionnally graded NiTi strips prepared by laser surface anneal. Acta Mater 60:1658–1668

    Article  Google Scholar 

  11. Meng Q, Yang H, Liu Y, Namb TH, Favier D (2013) Ti-50.8 at.% Ni wire with variable mechanical properties created by spatial electrical resistance over-ageing. J Alloys Compd 577:S245–S250

    Google Scholar 

  12. Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorimetric effects accompanying strain localisation. Int J Eng Sci 38:1759–1788

    Article  Google Scholar 

  13. Schlosser P, Louche H, Favier D, Orgéas L (2007) Image processing to estimate the heat sources related to phase transformations during tensile tests of NiTi tubes. Strain 43:260–271

    Article  Google Scholar 

  14. Louche H, Chrysochoos A (2001) Thermal and dissipative effects accompanying Luders band propagation. Mater Sci Eng A307:15–22

    Article  Google Scholar 

  15. Boulanger T, Chrysochoos A, Mabru C, Galtier A (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue 26:221–229

    Article  Google Scholar 

  16. Pastor ML, Balandraud X, Grediac M, Robert JL (2008) Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading. Infrared Phys Technol 51:505–515

    Article  Google Scholar 

  17. Maquin F, Pierron F (2009) Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mech Mater 41:928–942

    Article  Google Scholar 

  18. Chrysochoos A, Berthel B, Latourte F, Pagano S, Wattrisse B, Weber B (2008) Local energy approach to steel fatigue. Strain 44:327–334

    Article  Google Scholar 

  19. Saai A, Louche H, Tabourot L, Chang HJ (2010) Experimental and numerical study of the thermo-mechanical behavior of Al bi-crystal in tension using full field measurements and micromechanical modeling. Mech Mater 42:275–292

    Article  Google Scholar 

  20. Favier D, Louche H, Schlosser P, Orgéas L, Vacher P, Debove L (2007) Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension : investigation via temperature and strain fields measurements. Acta Mater 55(6):530–5322

    Google Scholar 

  21. Schlosser P, Favier D, Louche H, Orgéas L (2008) Experimental characterization of NiTi SMAs thermomechanical behaviour using temperature and strain full-field measurements. In: Advances in Science and Technology, vol 59. State-of-the-art Research and Application of SMAs Technologies, pp 40–49

  22. Louche H, Schlosser P, Favier D, Orgéas L (2012) Heat source processing for localized deformation with non-constant thermal conductivity. Application to superelastic tensile tests of NiTi shape memory alloys. Exp Mech A:1–16

    Google Scholar 

  23. Delobelle V, Favier D, Louche H (2013) Heat estimation from infrared measurement compared to DSC for austenite to R phase transformation in a NiTi alloy. J Mater Eng Perform. 22:1688–1693

  24. Favier D., Liu Y (2000) Restoration by rapid overheating of thermally stabilised martensite of NiTi shape memory alloys. J Alloys Compd 297:114–121

    Article  Google Scholar 

  25. Granta (2010) Granta design ces selector software. 20 Trumpington Street, Cambridge UK

  26. Matweb (2012) Matweb material property data. Automation Creations, Inc., 1:1

  27. Hultgren R, Orr RL, Anderson PD, Kelley KK (1964) Selected values of thermodynamic properties of metals and alloys. Jonh Wiley & Sons Inc

  28. Sukhanov VD, Tsikovin YN (1967) Temperature dependence of the heat capacity of some titanium alloys. Metallovedenie i termicheskaya obrbotka metallow (traduction en anglais) 6:50–51

    Google Scholar 

  29. Combres Y (2012) Propriétés du titane et de ses alliages. Techniques de l’ingénieur M 557:1–15

    Google Scholar 

  30. Heubner U (1969) Thermische und elektrische leitfiihigkeit von vanadinlegierungen zwischen 20 und 650 °C. J Nucl Mater 32:88–I00

    Article  Google Scholar 

  31. Terada Y, Ohkubo K, Nakagawa K, Mohri T, Suzuki T (1995) Thermal conductivity of B2-type aluminides and titanides. Intermetallics 3(5):347–355

    Article  Google Scholar 

  32. Zanotti C, Giuliani P, Bassani P, Zhang Z, Chrysanthou A (2010) Comparison between the thermal properties of fully dense and porous NiTi SMAs. Intermetallics 18(1):14–21

    Article  Google Scholar 

  33. Delobelle V (2012) Contributions à l’étude thermomécanique des alliages à mémoire de forme NiTi et à la réalisation par soudage de matériaux architecturés NiTi. PhD thesis, Université de Grenoble

  34. Legaie D, Pron H, Bissieux C, Blain V (2008) Thermographic application of black coatings on metals. In: 9th International Conference on quantitaive InfraRed thermography, vol 1. pp 1–2

  35. Delobelle V, Louche H, Favier D (2014) Numerical study of the effect of the paint layer used for infrared thermography on the heat sources estimations. QIRT, Submitted to QIRT:1

  36. Ayvazyan V, Batsale JC, Pradere C (2010) Simple possibilities of thermal diffusivity estimation for small-sized samples, with a laser pulse heating and infrared cameras. In: 10th QIRT

  37. Pradere C, Clerjaud L, Batsale JC, Dilhaire S (2011) High speed heterodyne infrared thermography applied to thermal diffusivity identification. Rev Sci Instrum 82:054901

    Article  Google Scholar 

  38. Kato H, Sasaki K (2012) Avoiding error of determining the martensite finish temperature temperature due to thermal inertia in differential scanning calorimetry: model and experiment of NiTi and Cu-Al-Ni shape memory alloys. J Mater Sci 47:1399–1400

    Article  Google Scholar 

  39. Faulkner MG, Amalraj JJ, Bhattacharyya A (2000) Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater Struct 9:632–639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Favier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delobelle, V., Favier, D., Louche, H. et al. Determination of Local Thermophysical Properties and Heat of Transition from Thermal Fields Measurement During Drop Calorimetric Experiment. Exp Mech 55, 711–723 (2015). https://doi.org/10.1007/s11340-014-9877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9877-z

Keywords

Navigation