Skip to main content
Log in

Hybrid Thermoelastic Stress Analysis

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Solids, like a confined gas, experience an increase in temperature when compressively loaded and a temperature decrease when stressed in tension. While such stress-induced temperature changes at a point in a solid are related to a linear combination of the local changes in the normal stresses, it is often necessary to know the individual stress components. An effective means to determine the individual stresses in engineering structures is to combine the measured thermal data with Airy stress function relevant mechanics information or analyses. Results demonstrate the ability of this general concept to provide reliable, full-field stresses in a range of engineering situations involving cracks or geometric discontinuities in isotropic or orthotropic composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Greene RJ, Patterson EA, Rowlands RE (2008) Thermoelastic stress analysis, Ch. 26. In: Sharpe WM (ed) Handbook of experimental solid mechanics. Springer, New York

    Google Scholar 

  2. Patterson EA, Rowlands RE (2008) Determining individual stresses thermoelastically. J Strain Anal 43(6):519–527

    Article  Google Scholar 

  3. Dulieu-Barton JM, Stanley P (1998) Development and applications of thermoelastic stress analysis. J Strain Anal 33(2):93–104

    Article  Google Scholar 

  4. Soutas-Little RW (1998) Elasticity. Dover, Mineola

    Google Scholar 

  5. Foust BE (2002) Individual stress determination in inverse problems by combining experimental methods and Airy stress functions, MS Thesis, University of Wisconsin, Madison. WI

  6. Ryall TG, Wong KA (1988) Determining stress components from thermoelastic data—a theoretical study. Mech Mater 7:205–214

    Article  Google Scholar 

  7. Ryall TG, Heller M, Jones R (1992) Determination of stress components from thermoelastic data without boundary conditions. J Appl Mech 59:841–847

    Article  Google Scholar 

  8. Ryall TG, Cox PM, Enke NF (1992) On the determination of dynamic and static stress components from experimental thermoelastic data. Mech Mater 14:47–57

    Article  Google Scholar 

  9. Dunn SA (1993) Separation of strain components in composite materials from thermoelastic temperature measurements. J Appl Mech 59:552–558

    Article  Google Scholar 

  10. Foust BE, Rowlands RE (2011) Thermoelastic determination of individual stresses in a diametrically-loaded disk. Strain 47:146–153

    Article  Google Scholar 

  11. Lin SJ, Matthys DR, Rowlands RE (2009) Separating stresses thermoelastically in a central circularly perforated plate using an Airy stress function. Strain 45(6):516–526

    Article  Google Scholar 

  12. Zanganeh M, Tomlinson RA, Yates JR (2008) T-stress determination using thermoelastic stress analysis. J Strain Anal 43:529–537

    Article  Google Scholar 

  13. Joglekar N (2009) Separating stresses using Airy stress function and TSA, effects of varying the amount and source locations of the input measured TSA data and number of Airy coefficients to use, MS Thesis, University of Wisconsin, Madison, WI

  14. Aziz AA (2010) Thermoelastically determined stresses around neighboring holes in finite structures whose stress fields interact, MS thesis, University of Wisconsin, Madison, WI

  15. Lin SJ, Quinn S, Matthys DR, New AM, Kincaid IM, Boyce BR, Khaja AA, Rowlands RE (2011) Thermoelastic determination of individual stresses in vicinity of a near-edge hole beneath a concentrated load. Exp Mech 51:797–814

    Article  Google Scholar 

  16. Lin SJ, Matthys DR, Quinn S, Davidson JP, Boyce BR, Khaja AA, Rowlands RE (2012) Stresses at and in the neighborhood of a near-edge hole in a plate subjected to an offset load from measured temperatures. Eur J Mech A-Solid 39C:209–217

    MathSciNet  Google Scholar 

  17. Lin SJ, Matthys DR, Samad WA, Khaja AA, Boyce BR, Rowlands RE (2012) Infrared stress analysis of unsymmetrically-loaded perforated member, ISEM-ACEM-SEM-7th ISEM’12-Taipei, Taiwan

  18. Samad WA, Khaja AA, Kaliyanda AR, Rowlands RE (2013) Hybrid thermoelastic stress analysis of a pinned joint. Exp Mech. doi:10.1007/s11340-013-9822-6

  19. Khaja AA, Rowlands RE (2013) Experimentally determined stresses associated with elliptical holes using polar coordinates. Strain 49(2):116–124

    Google Scholar 

  20. Samad WA, Rowlands RE (2013) Full-field thermoelastic stress analysis of a finite structure containing an irregularly-shaped hole. Exp Mech. doi:10.1007/s11340-013-9821-7

  21. Samad WA, Rowlands RE (2012) Hybrid full-field stress analysis of finite structures containing arbitrarily shaped cutouts, ISEM-ACEM-SEM-7th ISEM’12-Taipei, Taiwan

  22. Rauch BJ, Rowlands RE (1995) Determining reliable edge isopachic data from interior thermoelastic measurements. Exp Mech 35(2):174–181

    Article  Google Scholar 

  23. Barone S, Patterson EA (1998) An alternative finite-difference method for post-processing thermoelastic data using compatibility. J Strain Anal 33(6):437–447

    Article  Google Scholar 

  24. Huang YM, Rowlands RE, Lesniak JR (1990) Simultaneous stress separation, smoothing of measured thermoelastic information and enhanced boundary data. Exp Mech 30(4):398–403

    Article  Google Scholar 

  25. Huang YM, Abdel Moshen HH, Rowlands RE (1990) Determination of individual stresses thermoelastically. Exp Mech 30(1):88–94

    Article  Google Scholar 

  26. Huang YM, Rowlands RE (1991) Quantitative stress analysis based on the measured trace of the stress tensor. J Strain Anal 26(1):58–63

    Article  Google Scholar 

  27. Lin ST, Rowlands RE (1995) Thermoelastic stress analysis of orthotropic composites. Exp Mech 35(3):257–265

    Article  Google Scholar 

  28. Rhee J, Rowlands RE (1996) Stresses around extremely large or interacting multiple holes in orthotropic composites. Comput Struct 61(5):935–950

    Article  MATH  Google Scholar 

  29. Lin ST, Miles JP, Rowlands RE (1997) Image enhancement and stress separation of thermoelastically measured isopachic data under random loading. Exp Mech 37(3):225–231

    Article  Google Scholar 

  30. Rhee J, Rowlands RE (1999) Thermoelastic-numerical hybrid analysis of holes and cracks in composites. Exp Mech 39(4):349–355

    Article  Google Scholar 

  31. Kishimoto K, Inque H, Shinbo H, Shibuy T (1997) Inverse analysis related to stress separation in thermoelastic stress analysis. JSME Ser A 40(2):108–116

    Google Scholar 

  32. Hayabusa K, Inque H, Kishimoto K, Shibuy T (1999) Boundary element inverse analysis for stress separation in thermoelastic stress analysis. JSME Ser A 42(4):618–623

    Article  Google Scholar 

  33. Hayabusa K, Inque H, Kishimoto K, Shibuy T (2000) Improvement of accuracy of inverse analysis for stress separation in thermoelastic stress analysis. JSME Ser A 43(1):305–313

    Article  Google Scholar 

  34. Ni YY, Rowlands RE (2002) Thermoelastically-measured isopachics and BEM for inverse stress analysis on and adjacent to loaded and traction-free boundaries, Session Honoring Prof. J. W. Daly, 14th US Nat’l Cong. Theor. & Appl. Mechanics, Blacksburg

  35. Ni YY (2001) On the use of thermoelastically measured isopachics and boundary elements for inverse stress analysis, PhD Thesis, University of Wisconsin, Madison, WI

  36. Machiida K, Kutsuma Y (2003) Stress-components analysis by inverse problem using infrared thermography, ATEM03 (Adv. Tech in Exper. Mech), JSME-MMD

  37. Stanley P, Dulieu-Smith JM (1996) Determination of crack-tip parameters from thermoelastic data. Exp Tech 20(2):21–23

    Article  Google Scholar 

  38. Tomlinson RA, Nurse AD, Patterson EA (1997) On determining stress intensity factors for mixed mode cracks from thermoelastic data. Fatigue Fract Eng Mater Struct 20:217–226

    Article  Google Scholar 

  39. Lin ST, Feng Z, Rowlands RE (1997) Thermoelastic determination of stress intensity factors in orthotropic composites using the J-integral. Eng Fract Mech 56(4):579–592

    Article  Google Scholar 

  40. Ju SH, Rowlands RE (2003) Mixed-mode thermoelastic fracture analysis of orthotropic composites. Int J Fract 120:601–621

    Article  Google Scholar 

  41. Ju SH, Rowlands RE (2003) Thermoelastic determination of KI and KII in an orthotropic graphite epoxy composite. J Compos Mater 37(22):2011–2025

    Article  Google Scholar 

  42. He KY, Rowlands RE (2004) Determining stress intensity factors in orthotropic composites from far-field measured temperatures. Exp Mech 44(6):555–561

    Article  Google Scholar 

  43. Ju SH, Rowlands RE (2007) Thermoelastic determination of crack-tip coordinates in composites. Int J Solids Struct 44:4845–4859

    Article  MATH  Google Scholar 

  44. Waldman W, Ryall TG, Jones R (1990) On the determination of stress components in 3-D from thermoelastic data. Comp Stuct 36(3):553–557

    Article  Google Scholar 

  45. Murakami Y, Yoshimura Y (1997) Determination of all stress components from measurements of the stress invariant by the thermoelastic stress methods. Int J Solids Struct 34(35–36):4449–4461

    Article  MATH  Google Scholar 

  46. Gao XL, Rowlands RE (2000) Hybrid method for stress analysis of finite three- dimensional elastic solids. Int J Solids Struct 37:2727–2751

    Article  MATH  Google Scholar 

  47. Wong AK (11991) A non-adiabatic thermoelastic theory and use of SPATE on composite laminates, Proc. 9th Int’l. Conf. on Exper. Mech., ICEM9, Copenhagen, August, 20–24; also Wang AK (1991) A non-adiabatic thermoelastic theory for composite laminates. J Phys Chem Solids 51:483–494

    Google Scholar 

  48. Sigimoto S, Rowlands RE, Ishikawa T (2001) A thermal conductivity analysis affecting thermoelastic stress measurement of laminated composites, Int’l Conf. on Composite Materials (ICCM-13), Beijing, China

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Rowlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S.J., Samad, W.A., Khaja, A.A. et al. Hybrid Thermoelastic Stress Analysis. Exp Mech 55, 653–665 (2015). https://doi.org/10.1007/s11340-014-9869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9869-z

Keywords

Navigation