Skip to main content
Log in

Advances in Force and Moments Measurements by an Innovative Six-axis Load Cell

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper the design, the accuracy assessment and the calibration procedure of an innovative six axis load cell are presented. The load cell is able to measure the three forces and three moments and has been designed at the Politecnico di Milano (Technical University of Milan) as a result of 10 years of research in this field. The sensing structural element of the six-axis load cell is a three spoke structure constrained to the frame of the load cell by means of special joints conceived to avoid friction. Strain gauges are conveniently located on highly stressed areas. Mathematical models, both analytical and numerical, are implemented and presented in order to describe the behaviour of the load cell, to optimize its parameters and to theoretically assess its accuracy. A special device has been designed and constructed in order to accurately and quickly calibrate the load cell. Particular attention has been devoted to the processing of the strain gauges signals. An electronic DSP board, located inside the load cell, has been realized able to compute the six components of the generalized force from the strain gauge signals and return six voltage signals proportional to the measured forces. Software selectable filters and gains are implemented on the DSP board.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

F :

Vector of forces and moments acting at the load cell centre

T1,T2,T3 :

Reaction forces (statically determined structure)

E s :

Vector of the strains measured by the strain gauges

Ε b :

Vector of the strain signals measured by the bridge ε i (i=1,..,6)

C b :

Load cell force-deformation matrix

ΔV :

Vector of the output voltages ΔVi (i=1,..,6) at the Wheatstone bridges

V :

Excitation voltage at the Wheatstone bridges

k :

Gauge factor

L:

Total length of the spoke (from the spoke tip to the centre of the structure)

H :

Elastic matrix for an isotropic material

l/l joint :

Sensing element’s spoke length/sliding spherical joint’s spoke length

a/ajoint :

Sensing element’s spoke height/sliding spherical joint’s spoke height

b/bjoint :

Sensing element’s spoke width/sliding spherical joint’s spoke width

ψ/ψjoint :

Angular error between the spokes of the sensing element/sliding spherical joint

R/Rjoint :

Internal rigid ring radius (sensing element)/(sliding spherical joint)

n:

Number of spokes of the sliding spherical joint

xj,yj,zj :

Local coordinates related to spoke j

ξ j :

Axial coordinate of the deformable part of spoke j

A(ξ):

Cross section area of the spoke

Δ R :

Compliance matrix (contribution of the deformation of the elastic spherical joints)

Δ D :

Compliance matrix (contribution of the deformation of the spokes of the sensing element)

Jx :

Moment of inertia of the spoke’s section around the x axis

Jy :

Moment of inertia of the spoke’s section around the y axis

JP :

Polar moment of inertia of the spoke’s section

I :

Identity matrix

Δ :

Compliance matrix

M e :

Experimental calibration matrix

M thp :

Calibration matrix (quasi-statically determined structure)

\( \overline{\mathbf{M}} \) :

Inverse of calibration matrix

k a :

Joint axial stiffness

k rx /k ry :

Joint radial stiffnesses

k t :

Joint torsional stiffness

k bt /k b :

Joint bending stiffnesses

k x /k y /k z :

Load cell interface stiffnesses

S j :

Vector of the internal forces and moments acting at the j-th spoke root

S :

Vector of the internal forces and moments acting at the spoke roots

δ j :

Displacements and rotations at the j-th spoke root

δ xj ,δ yj ,δ zj :

Displacement components at the centre of the structure related to spoke j

ϕ xj ,ϕ yj ,ϕ zj :

Rotation components at the centre of the structure related to spoke j

Σ i :

Matrix that relates stresses at each strain gauge location to the reactions at the centre

σ ij :

Vector of stress components at each strain gauge location

ε ij :

Vector of strain components at each strain gauge location

εsg,ij :

Strain measured by each strain gauge

nx,ny,nz :

Components of the direction of the reading sensor of the strain gauge

q i :

Vector containing the functions of nx,ny,nz

α :

Angle between two consecutive spokes

R t (α) :

Rotation matrix

σ VM :

Von Mises stress

σ adm :

Admissible stress

E:

Young’s modulus

ν:

Poisson’s ratio

G:

Shear modulus

χ:

Shear factor

β1:

Spoke taper angle in yz plane

β2:

Spoke taper angle in xy plane

A(ω) :

Inertance—transfer function acceleration/force

ω :

Circular frequency

f :

Frequency

\( \overline{m} \) :

Mass of a single degree of freedom system

\( \overline{k} \) :

Stiffness of a single degree of freedom system

\( \overline{a} \) :

Acceleration

\( \overline{F} \) :

Applied force

DSP:

Digital signal processor

BW:

Bandwidth

x ij :

Error on positioning strain gauge i on spoke j (x direction, see Fig. 14)

y ij :

Error on positioning strain gauge i on spoke j (y direction, see Fig. 14)

z ij :

Error on positioning strain gauge i on spoke j (z direction, see Fig. 14)

ϑ ij :

Error on positioning strain gauge i on spoke j (orientation angle error, see Fig. 14)

cij :

Term of calibration matrix

SI:

Sensitivity indices

DI:

Disturbance indices (noise factors)

F.S.:

Full scale

u:

95 % relative uncertain with respect to full scale

LB:

Lower bound

UB:

Upper bound

e k :

Vector of calibration errors for the k-th load combination

F k :

Vector of calibration loads for the k-th load combination

ΔV k :

Vector of output voltages at the Wheatstone bridges k-th load combination

e cal :

Vector of calibration errors

F cal :

Vector of calibration loads

ΔV cal :

Vector of output voltages at the Wheatstone bridges measured during calibration procedure

E :

Vector of square errors

References

  1. Gobbi M, Mastinu G, Giorgetta F (2005) Sensors for measuring forces and moments with application to ground vehicle design and engineering. Proceedings ASME IMECE 2005 IMECE2005-81143

  2. Mastinu G, Gobbi M (2006) Giunto elastico a cerniera sferica traslante e sensore di forze e momenti perfezionato con tale giunto. Italian Patent, ME.05.025.A, 22/05/2006

  3. Mastinu G, Gobbi M (2010) Device and method for measuring forces and moments. United States Patent US 7 665 371 B2, 23 Feb 2010

  4. Mastinu G, Gobbi M (2005) Device and method for measuring forces and moments. Patent WO2005015146, 17 Feb 2005

  5. Mastinu G, Gobbi M (2007) Elastic joint with translating spherical hinge and force and moment sensor improved by means of the said joint. International Application number PCT/IB2007/001335, 16 May 2007

  6. Cook et al (1999) Multi-axis wheel transducer with angular position detector. Advanced Mechanical Technology, Inc. Patent, US5886350

  7. http://www.sendev.com/ Sensor Development Inc. (Model 77016 and 6 axis WFS), 5/2005

  8. http://www.michsci.com/ Michigan Scientific Corporation (model LW 12.8), 5/2005

  9. http://www.mts.com/ MTS Systems Corporation (SWIFT Wheel Force Transducer), 5/2005

  10. http://www.kistler.com Kistler (RoaDyn Wheel Force Sensor), 5/2005

  11. http://www.igel-ingenieure.de/ (IGel WFT Wheel Sensor), 5/2005

  12. Giorgetta F, Gobbi M, Mastinu G (2007) On the testing of vibration performances of road vehicle suspensions. Exp Mech 47:485–495. doi:10.1007/s11340-006-9022-8

    Article  Google Scholar 

  13. Gobbi M, Mastinu G (2004) Wheels with integrated sensors for measuring tyre forces and moments. Proc of the AVEC 04 Symposium, Arnhem, August 2004

  14. Gobbi M, Mastinu G, Rocca G (2008) Design of a smart wheel. Proceedings of 2008 Design Engineering Technical Conference, New York City, August 2008

  15. Gobbi M, Previati G, Mastinu G (2011) Refined design of a measuring wheel. Proceedings of the ASME Design Engineering Technical Conference IDETC/CIE 2011, Washington DC, USA, ISBN: 978-079185485-3

  16. Gobbi M, Aiolfi M, Pennati M, Previati G, Levi F, Ribaldone M, Mastinu G (2005) Measurement of the forces and moments acting on farm tractor pneumatic tyres. Veh Syst Dyn 43:412–433. doi:10.1080/00423110500140963

    Article  Google Scholar 

  17. Fischer U, Zimmermann C, Jörg W (2002) SG-balance 192-6I calibration report. RUAG Center Aerodynamics

  18. University of Southampton (2012) http://www.windtunnel.soton.ac.uk/balance/balance_RJMitchell.html

  19. Modern Machine & tool CO., INC (2012) Strain gage wind tunnel balances. http://www.mmtool.com/balances.html

  20. RUAG Aerospace Defence Technology (2005) Strain gauge balances for wind tunnel measurements. http://www.ruag.com

  21. Blakeborough A, Clément D, Williams MS, Woodward N (2002) Novel load cell for measuring axial force, shear force, and bending movement in large-scale structural experiments. Exp Mech 42:115–122

    Article  Google Scholar 

  22. Jakovljevic Z, Petrovic PB, Hodolic J (2012) Contact states recognition in robotic part mating based on support vector machine. Int J Adv Manuf Technol 59:377–395. doi:10.1007/s00170-011-3501-5

    Article  Google Scholar 

  23. Chen H, Wang J, Zhang B, Fuhlbrigge T (2011) Modeling and analysis of robotic wheel loading process in trim-and-final assembly. Ind Robot Int J 38:614–621

    Article  Google Scholar 

  24. Carignan F et al (1985) Force measuring platform and load cell using strain gages to measure shear forces. Advanced Mechanical Technology, Inc., Patent US4493220

  25. Spletzer B, Marron L (2000) Information package for the simplified six-axis load cell. sandia national laboratories, e-mail: blsplet @sandia.gov

  26. Berme N (2002) Multi-component force and moment measuring platform and load transducer. Bertec Corporation, Patent US6354155

  27. Engeler P et al (1995) Multicomponent force and moment measuring arrangement. K.K. Holding AG, US5402684

  28. Meyer R et al (1998) Six axis load cell. MTS SYSTEMS CORPORATION, European Patent EP0632884B1

  29. http://www.amti.biz/ Advanced Mechanical Technology, Inc, 2012

  30. http://www.jr3.com/ Multi-Axis Load Cell Technologies, 2012

  31. Yee AG, Akeel HA (1996) Six axis force sensor employing multiple shear strain gages. Fanuc USA Corporation (Elkgrove Village, IL), United States Patent 5490427

  32. Meyer RA, Olson DJ (1994) Six axis load cell. MTS Systems Corporation (Eden Prairie, MN), United States Patent 5315882

  33. Liu H, Willberg B, Meusel P (2005) Force moment sensor. Deutsches Zentrum fur Luft- und Raumfahrt e.V. (Koln, DE), United States Patent 6871552

  34. Berme N (2002) Multi-component force and moment measuring platform and load transducer, Bertec Corporation (Worthington, OH), United States Patent 6354155

  35. Meyer RA, Olson DJ (2005) Multi-axis load cell. MTS Systems Corporation (Eden Prairie, MN), United States Patent 6845675

  36. Meyer RA, Kempainen AJ, Olson DJ (2004) Multi-axis load cell body. MTS Systems Corporation (Eden Priarie, MN), United States Patent 6769312

  37. Lerat B (1989) Transducer for bending and twisting moments. Commissariat A L’Energie Atomique, Patent US4879913

  38. Wensink H, de Boer MJ, Wiegerink RJ, Zwijze AF, Elwenspoek MC (1998) First micromachined silicon load cell for loads up to 1000 kg. Proc SPIE ‘98, vol 3514 Micromachined Devices and Components IV

  39. Zwijze AF, Wiegerink RJ, Lammerink TSJ, Elwenspoek MC (1998) Low creep and hysteresis load cell based on a force to liquid pressure transformation. Proceedings of the Dutch National Sensor Conference, Enschede, March 2, 1998, pp 287–292

  40. Byun Y et al (2002) Parallel type six-axes force moment measuring apparatus. Samsung Electronics Co., Ltd., Patent US6349604

  41. http://www.ati-ia.com/ ATI Industrial Automation, (Series OMEGA and GAMMA), 5/2005

  42. Gagliano C, Gobbi M, Mastinu G, Pennati M (2012) Indoor/outdoor testing of a passenger car suspension for vibration and harshness analysis. SAE Int J Passeng Cars Mech Syst 5:937–948

    Google Scholar 

  43. Dwarakanath TA, Bhutani G (2011) Beam type hexapod structure based six component force-torque sensor. Mechatronics 21:1279–1287

    Article  Google Scholar 

  44. Hou Y, Zeng D, Yao J, Kang K, Lu L, Zhao Y (2009) Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms. Mechatronics 19:199–204

    Article  Google Scholar 

  45. Li Y et al (2012) Research on a novel parallel spoke piezoelectric 6-DOF heavy force/torque sensor. Mech Syst Signal Process. doi:10.1016/j.ymssp.2012.03.016

  46. Liu W, Li Y, Jia Z, Zhang J, Quian M (2011) Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor. Mech Syst Signal Process 25:331–343

    Article  Google Scholar 

  47. Jacq C, Luthi B, Maeder T, Lambercy O, Gassert R, Ryser P (2010) Thick-film multi-DOF force/torque sensor for wrist rehabilitation. Sensors Actuators A 162:361–366

    Article  Google Scholar 

  48. Liang Q, Zhang D, Song Q, Ge Y, Cao H, Ge Y (2010) Design and fabrication of a six-dimensional wrist force/torque sensor based on E-type membranes compared to cross beams. Measurement 43:1702–1719

    Article  Google Scholar 

  49. Mastinu G, Gobbi M, Previati G (2011) A new six-axis load cell. Part I: Design. Exp Mech 51:373–388

    Article  Google Scholar 

  50. Gobbi M, Previati G, Guarneri P, Mastinu G (2011) A new six-axis load cell. Part II: error analysis, construction and experimental assessment of performances. Exp Mech 51:389–399

    Article  Google Scholar 

  51. Robinson GM (1997) Finite element modelling of load cell hysteresis. Measurement 20:103–107

    Article  Google Scholar 

  52. Gobbi M, Mastinu G, Pennati M (2007) Indoor testing of road vehicle suspensions. Meccanica 43:173–184. doi:10.1007/s11012-008-9119-5

    Article  Google Scholar 

  53. Stanikov RB, Matusov JB (1995) Multicriteria optimization and engineering. Mechanical engineering: Industrial engineering, Chapman & Hall, New York

    Book  Google Scholar 

  54. Mastinu G, Gobbi M, Miano C (2006) Optimal design of complex mechanical systems with application to vehicle engineering. Springer Verlag, Berlin

    Google Scholar 

  55. Gobbi M (2013) A k, k-ε optimality selection based multi objective genetic algorithm with applications to vehicle engineering. Optim Eng 14:345–360. doi:10.1007/s11081-011-9185-8

    Article  MathSciNet  Google Scholar 

  56. Wu B, Luo J, Shen F, Ren Y, Wu Z (2011) Optimum design method of multi-axis force sensor integrated in humanoid robot foot system. Measurement 44:1651–1660

    Article  Google Scholar 

  57. Silva C, Murugan MS, Ganguli R (2011) Uncertainty quantification in helicopter performance using monte carlo simulations. J Aircraft 48(5) September-October 2011. doi:10.2514/1.C000288

  58. Beretta S (2009) Affidabilità delle costruzioni meccaniche. Springer-Verlag Italia, Milano

    Book  MATH  Google Scholar 

  59. Ewins DJ (2000) Modal testing: theory practice and application (2nd ed). Research Studies Press LTD., Baldock, Hertfordshire, England, 34–45

  60. Cowper GR (1996) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 1966:335–340

    Google Scholar 

  61. Gere J, Goodno BJ (2012) Mechanics of materials. Cengage Learning EMEA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gobbi.

Appendix

Appendix

Let us consider:

  • The vector S j of the six reactions in the central node of the structure for each spoke (a total of 18 reactions).

    $$ {\mathbf{S}}_{j\left(j=1,2,3\right)}={\left[\begin{array}{cccccc}\hfill {S}_{xj}\hfill & \hfill {S}_{yj}\hfill & \hfill {S}_{zj}\hfill & \hfill {M}_{xj}\hfill & \hfill {M}_{yj}\hfill & \hfill {M}_{zj}\hfill \end{array}\right]}^T $$
    $$ \mathbf{S}={\left[\begin{array}{ccc}\hfill {\mathbf{S}}_1\hfill & \hfill {\mathbf{S}}_2\hfill & \hfill {\mathbf{S}}_3\hfill \end{array}\right]}^T $$
  • The vector δ j of the six components of displacement “δ” and rotation “φ” of each spoke at the central node of the structure.

    $$ {\boldsymbol{\updelta}}_{j\left(j=1,2,3\right)}={\left[\begin{array}{cccccc}\hfill {\delta}_{xj}\hfill & \hfill {\delta}_{yj}\hfill & \hfill {\delta}_{zj}\hfill & \hfill {\varphi}_{xj}\hfill & \hfill {\varphi}_{yj}\hfill & \hfill {\varphi}_{zj}\hfill \end{array}\right]}^T $$
    $$ \boldsymbol{\updelta} ={\left[\begin{array}{ccc}\hfill {\boldsymbol{\updelta}}_1\hfill & \hfill {\boldsymbol{\updelta}}_2\hfill & \hfill {\boldsymbol{\updelta}}_3\hfill \end{array}\right]}^T $$
  • the rotation matrix R t (α) (α = ± 2/3π) defined as follows

    $$ \begin{array}{l}{\boldsymbol{R}}_{\boldsymbol{t}}=\left(\alpha \right)=\left[\begin{array}{cc}\hfill \boldsymbol{R}\left(\alpha \right)\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill \boldsymbol{R}\left(\alpha \right)\hfill \end{array}\right]\hfill \\ {}\boldsymbol{R}\left(\alpha \right)=\left[\begin{array}{ccc}\hfill \cos \left(\alpha \right)\hfill & \hfill 0\hfill & \hfill \sin \left(\alpha \right)\hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill - \sin \left(\alpha \right)\hfill & \hfill 0\hfill & \hfill \cos \left(\alpha \right)\hfill \end{array}\right]\hfill \end{array} $$
    (19)

In order to compute the 18 components of the vector S, a 18 equation system has been written in the following form

$$ \left\{\begin{array}{l}\mathbf{F}=\mathbf{I}\cdot {\mathbf{S}}_1+{\mathbf{R}}_{\mathbf{t}}\left(\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot {\mathbf{S}}_2+{\mathbf{R}}_{\mathbf{t}}\left(-\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot {\mathbf{S}}_3\hfill \\ {}{\boldsymbol{\updelta}}_1={\mathbf{R}}_{\mathbf{t}}\left(\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot {\boldsymbol{\updelta}}_2\hfill \\ {}{\boldsymbol{\updelta}}_1={\mathbf{R}}_{\mathbf{t}}\left(-\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot {\boldsymbol{\updelta}}_3\hfill \end{array}\right. $$
(20)

The first equation refers to the force equilibrium at the central node (roots of the three spokes), while the other 2 equations refer to the displacement consistency at the central node between the spokes 1–2 and 1–3 respectively. The equation system can be written in a compact form:

$$ \left[\begin{array}{ccc}\hfill \mathbf{I}\hfill & \hfill {\mathbf{R}}_{\mathbf{t}}\left(\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\hfill & \hfill {\mathbf{R}}_{\mathbf{t}}\left(-\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\hfill \\ {}\hfill \boldsymbol{\Delta} \hfill & \hfill -{\mathbf{R}}_{\mathbf{t}}\left(\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot \boldsymbol{\Delta} \hfill & \hfill \mathbf{0}\hfill \\ {}\hfill \boldsymbol{\Delta} \hfill & \hfill \mathbf{0}\hfill & \hfill -{\mathbf{R}}_{\mathbf{t}}\left(-\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.\pi \right)\cdot \boldsymbol{\Delta} \hfill \end{array}\right]\cdot \mathbf{S}={\mathbf{A}}_{\mathbf{A}}\cdot \mathbf{S}=\left[\begin{array}{c}\hfill \mathbf{F}\hfill \\ {}\hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right] $$
(21)

Where Δ is a 6 × 6 matrix that links the generalized displacements vector δ j to the reactions vector S j of spoke j:

$$ \begin{array}{cc}\hfill {\boldsymbol{\updelta}}_j=\left({\boldsymbol{\Delta}}_{\mathbf{R}}+{\boldsymbol{\Delta}}_{\mathbf{D}}\right)\cdot {\mathbf{S}}_j=\boldsymbol{\Delta} \cdot {\mathbf{S}}_j\hfill & \hfill j=1,2,3\hfill \end{array} $$
(22)

The matrix Δ derives from the sum of two different contributions: Δ R accounts for the elastic deformation of the sliding spherical joint at the spoke tip, and Δ D represents the elastic deformation of the spoke itself (Fig. 24).

Fig. 24
figure 24

Displacement δxj and rotation φyj due to a force Sxj on spoke j ((a) rigid displacement and rotation associated to the elasticity of the sliding spherical joints, (b) effect caused by the spoke elastic deformation)

Referring to the case of the deformation in the x direction due to a reaction force Sx in the same direction shown in Fig. 24, the contribution of the elastic deformation of the spoke and of the rigid motion due to the compliance of the joints of the generalized displacement δxj and of the generalized rotation φyj can be computed as follows. The total generalized rotation φyj reads

$$ {\varphi}_{Yj}\left({S}_{Xj}\right)={\varphi}_{Yj}\left({k}_{bt}\right)+{\varphi}_{Yj}\left({J}_Y\right) $$
(23)

where the first term of equation (23) expresses a rigid rotation of the spoke

$$ {\varphi}_{Yj}\left({K}_{bt}\right)=\frac{S_{Xj}\cdot L}{k_{bt}} $$
(24)

and the second term can be calculated by applying the virtual work principle

$$ {\varphi}_{Yj}\left({J}_y\right)={\displaystyle \underset{0}{\overset{l}{\int }}\frac{\left(R+\xi \right)\cdot {S}_{xj}}{E\cdot {J}_y\left(\xi \right)} d\xi} $$
(25)

The generalized displacement δxj reads

$$ {\delta}_{Xj}\left({S}_{Xi}\right)={\delta}_{Xj}\left({k}_{rx}\right)+{\delta}_{Xj}\left({k}_{bt}\right)+{\delta}_{Xj}\left({J}_Y\right)+{\varphi}_{Yj}\left({J}_Y\right)\cdot R $$
(26)

where the first two terms of equation (26) account for the rigid motion associated to the joints elasticity

$$ {\delta}_{Xj}\left({k}_{rx}\right)+{\delta}_{Xj}\left({k}_{bt}\right)=\frac{S_{Xj}}{K_{rX}}+{\varphi}_{Yj}\left({K}_{bt}\right)\cdot L $$
(27)

being φ Yj (K bt ) computed in equation (24). The third and fourth terms account for the elastic deformation of the spoke. In particular the third term can be obtained by applying the virtual work principle

$$ {\delta}_{Xj}\left({J}_Y\right)={\displaystyle \underset{0}{\overset{l}{\int }}\xi \cdot \frac{\left(R+\xi \right)\cdot {S}_{xj}}{E\cdot {J}_y\left(\xi \right)} d\xi +{\displaystyle \underset{0}{\overset{l}{\int }}\chi}\cdot \frac{S_{xj}}{A\left(\xi \right)} d\xi} $$
(28)

where χ is the shear factor and A(ξ) is the cross-section area. For a rectangular section the shear factor χ reads [60]

$$ \chi =\frac{12+11\cdot \nu }{10\cdot \left(1+\nu \right)} $$
(29)

The last term of equation (28) accounts for the shear contribution in the elastic deformation of the spoke [61]. The fourth term of equation (26) is given by considering the displacement of the rigid disk due to the rotation of the deformed spoke computed in equation (25).

All the displacements and rotations resulting at each spoke root can be computed by applying the same approach, and the matrix Δ reads

$$ \boldsymbol{\Delta} =\left[\begin{array}{cccccc}\hfill \frac{L^2}{k_{bt}}+\frac{1}{k_{rX}}+\frac{1}{E}{I}_1+\frac{1}{G}{I}_{11}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -\frac{L}{k_{bt}}-\frac{1}{E}{I}_2\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill \frac{L^2}{k_b}+\frac{1}{k_{rY}}+\frac{1}{E}{I}_3+\frac{1}{G}{I}_{12}\hfill & \hfill 0\hfill & \hfill \frac{L}{k_b}+\frac{1}{E}{I}_4\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{k_a}+\frac{1}{E}{I}_5\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill \frac{L}{k_b}+\frac{1}{E}{I}_6\hfill & \hfill 0\hfill & \hfill \frac{1}{k_b}+\frac{1}{E}{I}_7\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{L}{k_{bt}}-\frac{1}{E}{I}_8\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{k_{bt}}+\frac{1}{E}{I}_9\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{k_t}+\frac{1}{G}{I}_{10}\hfill \end{array}\right] $$

Where the coefficients I1–10 are summarized in Table 7

Table 7 Coefficients I1–10 used in the matrix Δ

while the coefficients I11 and I12 have the following expression [61]

$$ {I}_{11}={I}_{12}={\displaystyle \underset{0}{\overset{l}{\int }}\chi \cdot \frac{1}{A\left(\xi \right)} d\xi} $$
(30)

The coefficients reported in equation (30) quantify the effect of the shear force on the spoke elastic deformation.

Matrix Δ is numerically computed and it provides a linear relationship between the generalized displacements vector δ j and the reactions vector S j as stated in equation (22).

Numerical results show that the shear forces provide an average variation of 5 % on the computed stiffness values.

From equation (21), vector S can be computed. The linear relationship between S and the bridges outputs can be derived as follows.

Vector S can be divided into three vectors S j (j = 1,2,3), each one containing the 3 reaction forces and the 3 reaction moments applied at the tip of each spoke, and indicating with j the number of the spoke and with i the location of each of the 8 strain gauges on each spoke (i = 1a,1a′,1b,1b′,2a,2a′,2b,2b′, see Fig. 4), the stress components at each strain gauge location read

$$ {\boldsymbol{\upsigma}}_{ij}=\left[\begin{array}{c}\hfill {\sigma}_{xx}\hfill \\ {}\hfill {\sigma}_{yy}\hfill \\ {}\hfill {\sigma}_{zz}\hfill \\ {}\hfill {\tau}_{xy}\hfill \\ {}\hfill {\tau}_{xz}\hfill \\ {}\hfill {\tau}_{yz}\hfill \end{array}\right]={\boldsymbol{\Sigma}}_i\cdot {\mathbf{S}}_j $$
(31)

where Σ i is a 6 by 6 matrix that expresses the relationship between the reactions at the spoke tip and the stress components at each strain gauge location. Matrix Σ i is different for each of the 8 strain gauges on each spoke, but, being defined in a local reference frame, the 8 matrices Σ i are the same for all of the spokes.

By considering an elastic, isotropic material, the relationship between the stress and strain components at each strain gauge location is

$$ {\boldsymbol{\upvarepsilon}}_{ij}={\left(\begin{array}{c}\hfill {\varepsilon}_{xx}\hfill \\ {}\hfill {\varepsilon}_{yy}\hfill \\ {}\hfill {\varepsilon}_{zz}\hfill \\ {}\hfill {\gamma}_{\raisebox{1ex}{$ xy$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\hfill \\ {}\hfill {\gamma}_{\raisebox{1ex}{$ xz$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\hfill \\ {}\hfill {\gamma}_{\raisebox{1ex}{$ yz$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}\hfill \end{array}\right)}_{ij}=\left[\begin{array}{cccccc}\hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill -\raisebox{1ex}{$\nu $}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$E$}\right.\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$G$}\right.\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$G$}\right.\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$G$}\right.\hfill \end{array}\right]\cdot \left(\begin{array}{c}\hfill {\sigma}_{xx}\hfill \\ {}\hfill {\sigma}_{yy}\hfill \\ {}\hfill {\sigma}_{zz}\hfill \\ {}\hfill {\tau}_{xy}\hfill \\ {}\hfill {\tau}_{xz}\hfill \\ {}\hfill {\tau}_{yz}\hfill \end{array}\right)=\mathbf{H}\cdot {\boldsymbol{\Sigma}}_i\cdot {\mathbf{S}}_j $$
(32)

being H the matrix of the stress–strain relationship (Hooke law), j refers to the spoke number and i to the location of the strain gauge.

Finally, to get the deformation read by the strain gauge, the taper angles of the spoke have to be considered, i.e. the strain gauge orientation is different from the orientation of the local reference system of the spoke (see Fig. 25). The strain measured by the strain gauge can be expressed by considering the rotation of the strain tensor

Fig. 25
figure 25

Strain gauge orientations with respect to the spoke local reference system. β1 is the taper angle of the spoke in the plane yz, β2 refers to the plane xz

$$ {\varepsilon}_{sg, ij}={\left\lfloor \begin{array}{cccccc}\hfill { \cos}^2\left({\widehat{n}}_x\right)\hfill & \hfill { \cos}^2\left({\widehat{n}}_y\right)\hfill & \hfill { \cos}^2\left({\widehat{n}}_z\right)\hfill & \hfill \cos \left({\widehat{n}}_x\right) \cos \left({\widehat{n}}_y\right)\hfill & \hfill \cos \left({\widehat{n}}_x\right) \cos \left({\widehat{n}}_z\right)\hfill & \hfill \cos \left({\widehat{n}}_y\right) \cos \left({\widehat{n}}_z\right)\hfill \end{array}\right\rfloor}_i\cdot {\boldsymbol{\upvarepsilon}}_{ij} $$

where nx,ny,nz are the components of the direction of the strain gauge. Being q i the vector containing the functions of nx,ny,nz, the relationship can be expressed in a more compact form:

$$ {\varepsilon}_{sg, ij}={\mathbf{q}}_i\cdot {\boldsymbol{\upvarepsilon}}_{ij} $$
(33)

By replacing equation (32) in equation (33), the relationships between the vectors S j and the corresponding strain gauge measures can be obtained:

$$ {\varepsilon}_{sg, ij}={\mathbf{q}}_i\cdot \mathbf{H}\cdot {\boldsymbol{\Sigma}}_i\cdot {\mathbf{S}}_j={\mathbf{D}}_{ij}\cdot {\mathbf{S}}_j $$
(34)

where i refers to the strain gauge and j to the spoke. A total of 24 equations of the type of equation (34) can be written for the 24 strain gauges. By considering a full Wheatstone bridge connection, the equivalent strains measured by the six bridges due to the bending of the spokes read

$$ \begin{array}{l}{\varepsilon}_1=\left(\left({\mathbf{D}}_{1a1}+{\mathbf{D}}_{1a\prime 1}\right)-\left({\mathbf{D}}_{1b1}+{\mathbf{D}}_{1b\prime 1}\right)\right)\cdot {\mathbf{S}}_1={\overline{\mathbf{D}}}_{11}\cdot {\mathbf{S}}_1\hfill \\ {}{\varepsilon}_2=\left(\left({\mathbf{D}}_{2a1}+{\mathbf{D}}_{2a\prime 1}\right)-\left({\mathbf{D}}_{2b1}+{\mathbf{D}}_{2b\prime 1}\right)\right)\cdot {\mathbf{S}}_1={\overline{\mathbf{D}}}_{21}\cdot {\mathbf{S}}_1\hfill \\ {}{\varepsilon}_3=\left(\left({\mathbf{D}}_{3a2}+{\mathbf{D}}_{3a\prime 2}\right)-\left({\mathbf{D}}_{3b2}+{\mathbf{D}}_{3b\prime 2}\right)\right)\cdot {\mathbf{S}}_2={\overline{\mathbf{D}}}_{12}\cdot {\mathbf{S}}_2\hfill \\ {}{\varepsilon}_4=\left(\left({\mathbf{D}}_{4a2}+{\mathbf{D}}_{4a\prime 2}\right)-\left({\mathbf{D}}_{4b2}+{\mathbf{D}}_{4b\prime 2}\right)\right)\cdot {\mathbf{S}}_2={\overline{\mathbf{D}}}_{22}\cdot {\mathbf{S}}_2\hfill \\ {}{\varepsilon}_5=\left(\left({\mathbf{D}}_{5a3}+{\mathbf{D}}_{5a\prime 3}\right)-\left({\mathbf{D}}_{5b3}+{\mathbf{D}}_{5b\prime 3}\right)\right)\cdot {\mathbf{S}}_3={\overline{\mathbf{D}}}_{13}\cdot {\mathbf{S}}_3\hfill \\ {}{\varepsilon}_6=\left(\left({\mathbf{D}}_{6a3}+{\mathbf{D}}_{6a\prime 3}\right)-\left({\mathbf{D}}_{6b3}+{\mathbf{D}}_{6b\prime 3}\right)\right)\cdot {\mathbf{S}}_3={\overline{\mathbf{D}}}_{23}\cdot {\mathbf{S}}_3\hfill \end{array} $$

that can be rearranged in a more compact notation

$$ {\mathbf{E}}_{\mathbf{b}}=\left[\begin{array}{l}{\varepsilon}_1\hfill \\ {}{\varepsilon}_2\hfill \\ {}{\varepsilon}_3\hfill \\ {}{\varepsilon}_4\hfill \\ {}{\varepsilon}_5\hfill \\ {}{\varepsilon}_6\hfill \end{array}\right]={\left[\begin{array}{lll}{\overline{\mathbf{D}}}_{11}\hfill & \mathbf{0}\hfill & \mathbf{0}\hfill \\ {}{\overline{\mathbf{D}}}_{21}\hfill & \mathbf{0}\hfill & \mathbf{0}\hfill \\ {}\mathbf{0}\hfill & {\overline{\mathbf{D}}}_{12}\hfill & \mathbf{0}\hfill \\ {}\mathbf{0}\hfill & {\overline{\mathbf{D}}}_{22}\hfill & \mathbf{0}\hfill \\ {}\mathbf{0}\hfill & \mathbf{0}\hfill & {\overline{\mathbf{D}}}_{13}\hfill \\ {}\mathbf{0}\hfill & \mathbf{0}\hfill & {\overline{\mathbf{D}}}_{23}\hfill \end{array}\right]}_{6x18}\cdot {\left[\begin{array}{l}{\mathbf{S}}_1\hfill \\ {}{\mathbf{S}}_2\hfill \\ {}{\mathbf{S}}_3\hfill \end{array}\right]}_{18x1}=\overline{\mathbf{D}}\cdot \mathbf{S}=\overline{\mathbf{D}}\cdot \widehat{\mathbf{M}}\cdot \mathbf{F} $$
(35)

where \( \widehat{\mathbf{M}} \) is obtained by extracting the first six columns of the inverse of matrix A A of equation (21).

Finally, it is possible to compute the calibration matrix M thp

$$ \boldsymbol{\Delta} \mathbf{V}=\frac{V}{4}k{\mathbf{E}}_{\mathbf{b}}=\left(\frac{V}{4}k\overline{\mathbf{D}}\cdot \widehat{\mathbf{M}}\right)\mathbf{F}={{\mathbf{M}}_{\mathbf{thp}}}^{-1}\cdot \mathbf{F} $$
(36)

By simply inverting the terms in equation (36), the calibration matrix M thp can be derived

$$ \mathbf{F}={\mathbf{M}}_{\mathbf{thp}}\cdot \boldsymbol{\Delta} \mathbf{V} $$
(37)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballo, F., Gobbi, M., Mastinu, G. et al. Advances in Force and Moments Measurements by an Innovative Six-axis Load Cell. Exp Mech 54, 571–592 (2014). https://doi.org/10.1007/s11340-013-9824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9824-4

Keywords

Navigation