Skip to main content
Log in

Fatigue Response of Solvent-Based Self-Healing Smart Materials

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We investigated the healing of epoxy resins with embedded ethyl phenylacetate (EPA) solvent loaded capsules and shape memory alloy (SMA) wires under fatigue loading in tapered double cantilever beam (TDCB) mode. Under cyclic loading, the kinetics of solvent diffusion are in competition with the rate of damage propagation. We showed that the active mechanism of self-healing under continuous loading is different from that in quasi-static testing. Crack arrest was observed after some initial crack growth, resulting from the diffusion of EPA solvent into the crack tip, involving local plasticization of the epoxy. Finite element analysis confirmed that the lower modulus and higher elongation at break of the solvated epoxy reduced the stresses at the crack tip. This effect combined with the well-studied microcapsule toughening effect, tremendously increased the toughness of plain epoxy. For epoxy with embedded SMA wires, completely fractured samples, healed using SMA activation, showed similar fatigue resistance as virgin samples. Furthermore, SMA activation during a 10 min break also stabilized crack progression, compared to at least 2 h needed to reach the same effect without SMA wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  Google Scholar 

  2. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  Google Scholar 

  3. Hayes SA, Jones FR, Marshiya K, Zhang W (2007) A self-healing thermosetting composite material. Compos A Appl Sci Manuf 38(4):1116–1120

    Article  Google Scholar 

  4. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41–62

    Article  Google Scholar 

  5. Berl V, Schmutz M, Krische MJ, Khoury RG, Lehn JM (2002) Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays - formation, characterization, and properties. Chem Eur J 8(5):1227–1244

    Article  Google Scholar 

  6. Kalista SJ, Ward TC, Oyetunji Z (2007) Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14(5):391–397

    Article  Google Scholar 

  7. Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807

    Article  Google Scholar 

  8. Caruso MM, Delafuente DA, Ho V, Sottos NR, Moore JS, White SR (2007) Solvent-promoted self-healing epoxy materials. Macromolecules 40(25):8830–8832

    Article  Google Scholar 

  9. Yan CY, Min ZR, Ming QZ, Chen J, Gui CY, Xue ML (2008) Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14):5197–5202

    Article  Google Scholar 

  10. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38(6):1525–1532

    Article  Google Scholar 

  11. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585

    Article  Google Scholar 

  12. Williams HR, Trask RS, Weaver PM, Bond IP (2008) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5(18):55–65

    Article  Google Scholar 

  13. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40(1):179–211

    Article  Google Scholar 

  14. Kirkby E, de Oliveira R, Michaud V, Månson JA (2011) Impact localisation with fbg for a self-healing carbon fibre composite structure. Compos Struct 94(1):8–14

    Article  Google Scholar 

  15. Kessler SS, Spearing SM, Soutis C (2002) Damage detection in composite materials using lamb wave methods. Smart Mater Struct 11(2):269–278

    Article  Google Scholar 

  16. Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Månson JAE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18(15):2253–2260

    Article  Google Scholar 

  17. Park JS, Takahashi K, Guo Z, Wang Y, Bolanos E, Hamann-Schaffner C, Murphy E, Wudl F, Hahn HT (2008) Towards development of a self-healing composite using a mendable polymer and resistive heating. J Compos Mater 42(26):2869–2881

    Article  Google Scholar 

  18. van der Zwaag S, Schmets AJM (2007) Self healing materials : an alternative approach to 20 centuries of materials science. Springer, Dordrecht

    Book  Google Scholar 

  19. Kirkby EL, Michaud VJ, Månson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50(23):5533–5538

    Article  Google Scholar 

  20. Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polymer 53(2):370–378

    Article  Google Scholar 

  21. Yuan YC, Rong MZ, Zhang MQ, Yang GC (2009) Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer 50(24):5771–5781

    Article  Google Scholar 

  22. Toohey KS, Hansen CJ, Lewis JA, White SR, Sottos NR (2009) Delivery of two-part self-healing chemistry via microvascular networks. Adv Funct Mater 19(9):1399–1405

    Article  Google Scholar 

  23. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater 18(13):1898–1904

    Article  Google Scholar 

  24. Weisenberger LA, Koenig JL (1990) Nmr imaging of diffusion processes in polymers: measurement of the spatial dependence of solvent mobility in partially swollen pmma rods. Macromolecules 23(9):2445–2453

    Article  Google Scholar 

  25. Dutheillet Y, Mantle M, Vesely D, Gladden L (1999) Diffusion of water-acetic acid mixtures in epoxy. J Polym Sci B Polym Phys 37(23):3328–3336

    Article  Google Scholar 

  26. Hamilton AR, Sottos NR, White SR (2012) Mitigation of fatigue damage in self-healing vascular materials. Polymer 53(24):5575–5581

    Article  Google Scholar 

  27. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - part i: manual infiltration. Compos Sci Technol 65(15–16):2466–2473

    Article  Google Scholar 

  28. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite–part II: in situ self-healing. Compos Sci Technol 65(15–16):2474–2480

    Article  Google Scholar 

  29. Brown EN, White SR, Sottos NR (2006) Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci 41(19):6266–6273

    Article  Google Scholar 

  30. Shin CS, Huang KC, Li RZ (1998) Artificial retardation of fatigue crack growth by the infiltration of cracks by foreign materials. Fatigue Fract Mater Struct 21(7):835–846

    Article  Google Scholar 

  31. Caruso MM (2010) Solvent-based self-healing polymeric materials. PhD thesis, University of Illinois

  32. Neuser S, Michaud V (2013) Effect of aging on the performance of solvent-based self-healing materials. Polym Chem. doi:10.1039/C3PY00064H

  33. Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR (2009) Microcapsules filled with reactive solutions for self-healing materials. Polymer 50(4):990–997

    Article  Google Scholar 

  34. Jones AS, Rule JD, Moore JS, White SR, Sottos NR (2006) Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater 18(5):1312–1317

    Article  Google Scholar 

  35. Rule JD, Brown EN, Sottos NR, White SR, Moore JS (2005) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17(2):205–208

    Article  Google Scholar 

  36. Beres W, Koul AK, Thamburaj R (1997) A tapered double-cantilever-beam specimen designed for constant-k testing at elevated temperatures. J Test Eval 25(6):536–542

    Article  Google Scholar 

  37. Brown EN (2011) Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. Journal Strain Anal Eng Des 46(3):167–186

    Article  Google Scholar 

  38. Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42(4):372–379

    Article  Google Scholar 

  39. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85(4):528–534

    Article  Google Scholar 

  40. Moy P, Karasz FE (1980) Epoxy-water interactions. Polym Eng Sci 20(4):315–319

    Article  Google Scholar 

  41. Jones AS, Rule JD, Moore JS, Sottos NR, White SR (2007) Life extension of self-healing polymers with rapidly growing fatigue cracks. J R Soc Interface 4(13):395–403

    Article  Google Scholar 

  42. ANSYS Inc http://www.ansys.com/. Accessed 7 Apr 2012

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Swiss National Science Foundation (FNRS 511482), the Laboratory of Applied Mechanics and Reliability Analysis (LMAF) at EPFL for using their fatigue testing device and M. G. Sahini, E. Rotterman and S. Clerc for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Michaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuser, S., Michaud, V. Fatigue Response of Solvent-Based Self-Healing Smart Materials. Exp Mech 54, 293–304 (2014). https://doi.org/10.1007/s11340-013-9787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9787-5

Keywords

Navigation