Skip to main content
Log in

Debris Field Kinetics during the Dynamic Fragmentation of Polyphase Natural Ceramic Blocks

Ejecta Measurements and Damage Modes

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The dynamic fragmentation of coarse and fine grained granitoid blocks during impact has been examined for energies of 1.9 kJ to 3.0 kJ and 2.7 kJ to 6.8 kJ, respectively. A particle tracking algorithm was developed to measure ejecta size and velocity at the rear of the target for a horizontal railgun arrangement. Fragments for the finer-grained material are smaller than the coarser-grained specimens as a result of enhanced comminution of fractured surfaces and increased intergranular fracture. Length scales > 6 mm contain > 80 % of the total mass and kinetic energy. Median ejection velocities increase for increasing impact energy (range from 5 m/s to 10 m/s for both materials). These are low in comparison to incoming projectile velocity (250 m/s to 500 m/s) and indicate that the bulk of incoming energy is dissipated into forms other than kinetic energy transfer (e.g., heat and comminution). Approximately 25 % of the mass and 80 % of the kinetic energy is contained in velocities > 20 m/s. The total conversion of impact energy to ejecta kinetic energy is estimated as approximately 3 % for the coarser material and 4 % for the finer grained material. The % conversion to momentum is higher, increasing from 7 % to 11 % for the coarser grained material and 21 % to 30 % for the finer grained material. This highlights the importance of momentum transfer during impact testing at low speeds into blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The Hugoniot elastic limit is the limit of elastic deformation that ceramics can endure before deforming plastically or brittlely under dynamic loading [10, 11].

References

  1. Mott N (1943) A theory of the fragmentation of shells and bombs. Technial Report AC4035, United Kingdom Ministry of Supply

  2. Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36:353–384

    Article  Google Scholar 

  3. Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen CF (1974) Fragmentation of rock under dynamic loads. Int J Rock Mech Min. Sci 11(8):303–317

    Article  Google Scholar 

  4. Grady DE (2009) Length scales and size distributions in dynamic fragmentation. Int J Fract 163(1–2):85–99

    Google Scholar 

  5. Meyers MA, Aimone CT (1983) Dynamic fracture (spalling) of metals. Prog Mater Sci 28(1):1–96

    Article  Google Scholar 

  6. French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI contribution No. 954. Lunar and Planetary Institute, Houston

    Google Scholar 

  7. Aler J, Mouza JD, Arnould M (1996) Measurement of the fragmentation efficiency of rock mass blasting and its mining applications. Int J Rock Mech Min Sci Geomech Abstr 33(2):125–139

    Article  Google Scholar 

  8. Strassburger E (2009) Ballistic testing of transparent armour ceramics. J Eur Ceram Soc 29(2):267–273. Special Issue on Transparent Ceramics

    Article  Google Scholar 

  9. Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53(3):565–596

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhou F, Molinari JF, Ramesh K (2006) Analysis of the brittle fragmentation of an expanding ring. Comput Mater Sci 37(1–2):74–85

    Article  Google Scholar 

  11. Zhou F, Molinari JF, Ramesh KT (2006) Effects of material properties on the fragmentation of brittle materials. Int J Fract 139:169–196

    Article  MATH  Google Scholar 

  12. Rong C, Xiao-Xin Y, Hung-Sen X (1979) Studies of the fracture of gabbro. Int J Rock Mech Min Sci 16(3):187–193

    Article  Google Scholar 

  13. Kocer C, Collins RE (1998) Angle of hertzian cone cracks. J Am Ceram Soc 81(7):1736–1742

    Article  Google Scholar 

  14. Shipway PH, Hutchings IM (1993) Fracture of brittle spheres under compression and impact loading. I. Elastic stress distributions. Philos Mag A 67(6):1389–1404

    Article  Google Scholar 

  15. Shenoy V, Kim K-S (2003) Disorder effects in dynamic fragmentation of brittle materials. J Mech Phys Solids 51(11–12):2023–2035

    Article  MATH  MathSciNet  Google Scholar 

  16. Kolmogorov A (1991) The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proc R Soc Lond A 434:9–13

    Article  MATH  MathSciNet  Google Scholar 

  17. Shockey DA, Marchand A, Skaggs S, Cort G, Burkett M, Parker R (1990) Failure phenomenology of confined ceramic targets and impacting rods. Int J Impact Eng 9(3):263–275

    Article  Google Scholar 

  18. Chin ESC (1999) Army focused research team on functionally graded armor composites. Mater Sci Eng A 259(2):155–161

    Article  Google Scholar 

  19. Goncalves DP, de Melo FCL, Klein AN, Al-Qureshi HA (2004) Analysis and investigation of ballistic impact on ceramic/metal composite armour. Int J Mach Tools Manufact 44(2–3):307–316

    Article  Google Scholar 

  20. Wilkins ML (1978) Mechanics of penetration and perforation. Int J Eng Sci 16(11):793–807. Special Issue: Penetration Mechanics

    Article  Google Scholar 

  21. Spray JG (2010) Frictional melting processes in planetary materials: from hypervelocity impact to earthquakes. Annu Rev Earth Planet Sci 38(1):221–254

    Article  Google Scholar 

  22. Marder M, Gross S (1995) Origin of crack tip instabilities. J Mech Phys Solids 43(1):1–48

    Article  MATH  MathSciNet  Google Scholar 

  23. Holland L (1984) Distributed-current-feed and distributed-energy-store railguns. IEEE Trans Magn 20(2):272–275

    Article  Google Scholar 

  24. Poltanov A, Kondratenko A, Glinov A, Ryndin V (2001) Multi-turn railguns: concept analysis and experimental results. IEEE Trans Magn 37(1):457–461

    Article  Google Scholar 

  25. Pappas J, Piccone D (2001) Power converters for railguns. IEEE Trans Magn 37(1):379–384

    Article  Google Scholar 

  26. Schneider M, Liebfried O, Stankevic V, Balevicius S, Zurauskiene N (2009) Magnetic diffusion in railguns: measurements using cmr-based sensors. IEEE Trans Magn 45(1):430–435

    Article  Google Scholar 

  27. Holsapple KA, Schmidt RM (1980) On the scaling of crater dimensions 1: explosive processes. J Geophys 85:7247–7256

    Article  Google Scholar 

  28. Holsapple KA, Schmidt RM (1982) On the scaling of crater dimensions 2: impact processes. J Geophys 87:1849–1870

    Article  Google Scholar 

  29. Walker J, Chocron S (2008) Near-earth object deflection using conventional explosives. Int J Impact Eng 35(12):1473–1477

    Article  Google Scholar 

  30. Saito T, Kaiho K, Abe A, Katayama M, Takayama K (2008) Hypervelocity impact of asteroid/comet on the oceanic crust of the earth. Int J Impact Eng 35(12):1770–1777

    Article  Google Scholar 

  31. Hogan JD, Spray JG, Rogers RJ, Boonsue S, Vincent G, Schneider M (2011) Micro-scale energy dissipation mechanisms during dynamic fracture in natural polyphase ceramic blocks. Int J Impact Eng 38(12):931–939

    Article  Google Scholar 

  32. Grady DE, Kipp ME (1979) The micromechanics of impact fracture of rock. Int J Rock Mech 16(5):293–302

    Article  Google Scholar 

  33. Giblin I (1998) New data on the velocity-mass relation in catastrophic disruption. Planet Space Sci 46(8):921–928

    Article  Google Scholar 

  34. Hartmann WK (1985) Impact experiments: 1. Ejecta velocity distributions and related results from regolith targets. Icarus 63(1):69–98

    Article  Google Scholar 

  35. Melosh H (1987) High-velocity solid ejecta fragments from hypervelocity impacts. Int J Impact Eng 5(1–4):483–492. Hypervelocity Impact Proceedings of the 1986 Symposium

    Article  Google Scholar 

  36. Polanskey CA, Ahrens TJ (1990) Impact spallation experiments: fracture patterns and spall velocities. Icarus 87(1):140–155

    Article  Google Scholar 

  37. Nakamura A, Fujiwara A (1991) Velocity distribution of fragments formed in a simulated collisional disruption. Icarus 92(1):132–146

    Article  Google Scholar 

  38. Kamminga H (1982) Life from spacea history of panspermia. Vistas Astron 26:67–86

    Article  Google Scholar 

  39. Gault D, Heitowit E (1963) The partition of energy for hypervelocity impact craters formed in rock. Proc. 6th Hypervelocity Impact Symp 2(2)419–456

    Google Scholar 

  40. Fujiwara A, Tsukamoto A (1980) Experimental study on the velocity of fragments in collisional breakup. Icarus 44(1):142–153

    Article  Google Scholar 

  41. Braslau D (1970) Partitioning of energy in hypervelocity impact against loose sand targets. J Geophys Res 75(20):3987–3999

    Article  Google Scholar 

  42. Hermalyn B, Schultz PH (2010) Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209(2):866–870

    Article  Google Scholar 

  43. Michikami T, Moriguchi K, Hasegawa S, Fujiwara A (2007) Ejecta velocity distribution for impact cratering experiments on porous and low strength targets. Planet Space Sci 55(12):70–88

    Article  Google Scholar 

  44. Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013) Dynamic fragmentation of natural ceramic tiles: ejecta measurements and kinetic consequences. Int J Impact Eng 58:1–16

    Article  Google Scholar 

  45. Matlab User Manual (2013)

  46. Kick F (1885) Das gesetz des proportionalen widerstandes und seine anwendung. Arthur Felix, Leipzig

    Google Scholar 

  47. Housen KR, Holsapple KA (2011) Ejecta from impact craters. Icarus 211(1):856–875

    Article  Google Scholar 

  48. Jutzi M, Michel P, Benz W, Richardson DC (2010) Fragment properties at the catastrophic disruption threshold: the effect of the parent bodys internal structure. Icarus 207(1):54–65

    Article  Google Scholar 

  49. Artemieva NA, Wünnemann K, Krien F, Reimold WU, Stöffler D (2013) Ries crater and suevite revisited—Observations and modeling Part II: Modeling. Meteorit Planet Sci 48(4):590–627. doi:10.1111/maps.12085

    Article  Google Scholar 

  50. Hukki RT (1961) Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. SME-AIME 220:403–408

    Google Scholar 

  51. Schultz PH (1992) Atmospheric effects on ejecta emplacement. J Geophys Res Planet 97(E7):11623–11662

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council (NSERC) PGS-D scholarship to JDH and funding from NSERC, the Canada Research Chairs program and the Canada Foundation for Innovation to JGS. The authors would also like to thank the effort and contribution during the experimental phase of the study of Yannick Boehrer, David Bluntzer and Philippe Baumann at ISL. Suporn Boonsue kindly assisted with the electron microscopy. Planetary and Space Science Centre contribution 75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Hogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, J.D., Rogers, R.J., Spray, J.G. et al. Debris Field Kinetics during the Dynamic Fragmentation of Polyphase Natural Ceramic Blocks. Exp Mech 54, 211–228 (2014). https://doi.org/10.1007/s11340-013-9777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9777-7

Keywords

Navigation